login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A318169 Composite numbers k such that sigma_2(k) - 1 is a square, where sigma_2(k) = A001157(k) is the sum of squares of divisors of k. 0
6, 40, 136, 2696, 3352, 46976, 223736, 5509736, 1915798072 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

This property is shared with all the primes since sigma_2(p) = 1 + p^2.

The values of sqrt(sigma_2(a(n)-1)) are 7, 47, 157, 3107, 3863, 54243, 257843, 6349657, 2207848187.

Are there terms not of the form 2^k * p where p is prime? - David A. Corneth, Aug 20 2018

2*10^12 < a(10) <= 44463118771144. The terms 21687324345660824, 14524130539077100050485512, 287674439504279743204606472 (and others) of the form 2^k * p can be found by solving the quadratic Diophantine equation sigma_2(2^k) * (p^2 + 1) = x^2 + 1 for appropriate values of k. - Giovanni Resta, Aug 20 2018

LINKS

Table of n, a(n) for n=1..9.

MATHEMATICA

sQ[n_] := IntegerQ[Sqrt[n]]; aQ[n_] := CompositeQ[n] && sQ[DivisorSigma[2, n]-1]; Select[Range[10000], aQ]

PROG

(PARI) forcomposite(n=2, 1e15, if( issquare(sigma(n, 2)-1), print1(n, ", ")))

(MAGMA) [n: n in [2..6*10^6] |not IsPrime(n) and IsSquare(DivisorSigma(2, n)-1)]; // Vincenzo Librandi, Aug 22 2018

CROSSREFS

Cf. A001157, A046655, A289290.

Sequence in context: A229638 A210291 A089207 * A027777 A227013 A073773

Adjacent sequences:  A318166 A318167 A318168 * A318170 A318171 A318172

KEYWORD

nonn,more

AUTHOR

Amiram Eldar, Aug 20 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 24 22:04 EST 2020. Contains 332216 sequences. (Running on oeis4.)