login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A089194 Primes p such that p-1 and p+1 are cube- or higher power-free. 7
2, 3, 5, 11, 13, 19, 29, 37, 43, 59, 61, 67, 83, 101, 131, 139, 149, 157, 173, 179, 181, 197, 211, 227, 229, 277, 283, 293, 307, 317, 331, 347, 349, 373, 389, 397, 419, 421, 443, 461, 467, 491, 509, 523, 547, 557, 563, 571, 587, 613, 619, 643, 653, 659, 661 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

A212793(a(n) - 1) = A212793(a(n) + 1) = 1. - Reinhard Zumkeller, May 27 2012

LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 1..10000

FORMULA

{p in A000040: p+1 in A004709 and p-1 in A004709}. - R. J. Mathar, Dec 08 2015

EXAMPLE

43 is included because 43 - 1 = 2 * 3 * 7 and 43 + 1 = 2^2 * 11 are both cubefree.

71 is omitted because the p+1 side, 72 = 2^3 * 3^2, has a cube factor.

MAPLE

isA089194 := proc(n)

    if isprime(n) then

        isA004709(n-1) and isA004709(n+1) ;

    else

        false;

    end if;

end proc: # R. J. Mathar, Dec 08 2015

MATHEMATICA

f[n_]:=Module[{a=m=0}, Do[If[FactorInteger[n][[m, 2]]>2, a=1], {m, Length[FactorInteger[n]]}]; a]; lst={}; Do[p=Prime[n]; If[f[p-1]==0&&f[p+1]==0, AppendTo[lst, p]], {n, 6!}]; lst (* Vladimir Joseph Stephan Orlovsky, Jul 15 2009 *)

p3fQ[n_]:=Max[Transpose[FactorInteger[n]][[2]]]<3; Select[Prime[Range[ 200]], AllTrue[#+{1, -1}, p3fQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Apr 08 2015 *)

PROG

(PARI)

\\ input number of iterations n, power p and the number to subtract k.

powerfreep2(n, p, d) = { c=0; pc=0; forprime(x=2, n, pc++; if(ispowerfree(x-d, p) && ispowerfree(x+d, p), c++; print1(x", "); ) ); print(); print(c", "pc", "c/pc+.0) }

ispowerfree(m, p1) = { flag=1; y=component(factor(m), 2); for(i=1, length(y), if(y[i] >= p1, flag=0; break); ); return(flag) }

(Haskell)

a089194 n = a089194_list !! (n-1)

a089194_list = filter ((== 1) . a212793 . (+ 1)) a097375_list

-- Reinhard Zumkeller, May 27 2012

CROSSREFS

Cf. A004709. Subsequence of A089189.

Sequence in context: A104293 A153002 A042999 * A050229 A224321 A053184

Adjacent sequences:  A089191 A089192 A089193 * A089195 A089196 A089197

KEYWORD

easy,nonn

AUTHOR

Cino Hilliard, Dec 08 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 18 00:09 EDT 2019. Contains 328135 sequences. (Running on oeis4.)