|
|
A089002
|
|
Number of non-congruent solutions to x^2 + 2y^2 == -1 (mod n).
|
|
3
|
|
|
1, 2, 2, 4, 6, 4, 8, 0, 6, 12, 10, 8, 14, 16, 12, 0, 16, 12, 18, 24, 16, 20, 24, 0, 30, 28, 18, 32, 30, 24, 32, 0, 20, 32, 48, 24, 38, 36, 28, 0, 40, 32, 42, 40, 36, 48, 48, 0, 56, 60, 32, 56, 54, 36, 60, 0, 36, 60, 58, 48, 62, 64, 48, 0, 84, 40, 66, 64, 48, 96
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
LINKS
|
|
|
FORMULA
|
Multiplicative with a(2^e) = 2^e for e <= 2, a(2^e) = 0 for e > 2, a(p^e) = (p-1)*p^(e-1) for p-2 mod 8 = +-1, a(p^e) = (p+1)*p^(e-1) for p-2 mod 8 = +-3. - Andrew Howroyd, Jul 15 2018
|
|
MATHEMATICA
|
f[2, e_] := If[e < 3, 2^e, 0]; f[p_, e_] := If[MemberQ[{1, 7}, Mod[p - 2, 8]], (p - 1), (p + 1)] * p^(e - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 11 2020 *)
|
|
PROG
|
(PARI) a(n)={my(v=vector(n)); for(i=0, n-1, v[i^2%n + 1]++); sum(i=0, n-1, v[i+1]*v[(-1-2*i)%n + 1])} \\ Andrew Howroyd, Jul 09 2018
(PARI) a(n)={my(f=factor(n)); prod(i=1, #f~, my(p=f[i, 1], e=f[i, 2]); if(p==2, if(e>2, 0, 2^e), p^(e-1)*if(abs(p%8-2)==1, p-1, p+1)))} \\ Andrew Howroyd, Jul 09 2018
|
|
CROSSREFS
|
|
|
KEYWORD
|
mult,nonn,easy
|
|
AUTHOR
|
Yuval Dekel (dekelyuval(AT)hotmail.com), Nov 02 2003
|
|
STATUS
|
approved
|
|
|
|