The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A088442 A linear version of the Josephus problem. 9
 1, 3, 1, 3, 9, 11, 9, 11, 1, 3, 1, 3, 9, 11, 9, 11, 33, 35, 33, 35, 41, 43, 41, 43, 33, 35, 33, 35, 41, 43, 41, 43, 1, 3, 1, 3, 9, 11, 9, 11, 1, 3, 1, 3, 9, 11, 9, 11, 33, 35, 33, 35, 41, 43, 41, 43, 33, 35, 33, 35, 41, 43, 41, 43, 129, 131, 129, 131, 137, 139, 137, 139, 129, 131 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Or a(n) is in A145812 such that (2*n + 3 - a(n))/2 is in A145812 as well. Note also that a(n) + 2*A090569(n+1) = 2*n + 3. - Vladimir Shevelev, Oct 20 2008 LINKS Reinhard Zumkeller, Table of n, a(n) for n = 0..10000 C. Groer, The Mathematics of Survival: From Antiquity to the Playground, Amer. Math. Monthly, 110 (No. 9, 2003), 812-825. (This is the sequence W(2n+1).) Index entries for sequences related to the Josephus Problem FORMULA To get a(n), write 2n+1 as Sum b_j 2^j, then a(n) = 1 + Sum_{j odd} b_j 2^j. Equals A004514(n) + 1. - Chris Groer (cgroer(AT)math.uga.edu), Nov 10 2003 a(n) = 2*A063694(n) + 1. - G. C. Greubel, Dec 05 2022 EXAMPLE If n=4, 2n+1 = 9 = 1 + 0*2 + 0*2^2 + 1*2^3, so a(4) = 1 + 0*2 + 1*2^3 = 9. MAPLE a:=proc(n) local b: b:=convert(2*n+1, base, 2): 1+sum(b[2*j]*2^(2*j-1), j=1..nops(b)/2) end: seq(a(n), n=0..100); with(Bits): seq(And(2*n+1, convert("aaaaaa", decimal, hex)) + 1, n=0..127); # Georg Fischer, Dec 03 2022 MATHEMATICA A004514[n_]:= A004514[n]= If[n==0, 0, 2*(n-A004514[Floor[n/2]])]; A088442[n_] := A004514[n] +1; Table[A088442[n], {n, 0, 100}] (* G. C. Greubel, Dec 05 2022 *) PROG (Haskell) a088442 = (+ 1) . a004514 -- Reinhard Zumkeller, Sep 26 2015 (Magma) function A063694(n) if n le 1 then return n; else return 4*A063694(Floor(n/4)) + (n mod 2); end if; return A063694; end function; A088442:= func< n | 2*A063694(n) + 1 >; [A088442(n): n in [0..100]]; // G. C. Greubel, Dec 05 2022 (SageMath) def A063694(n): if (n<2): return n else: return 4*A063694(floor(n/4)) + (n%2) def A088442(n): return 2*A063694(n) + 1 [A088442(n) for n in range(101)] # G. C. Greubel, Dec 05 2022 (Python) def A088442(n): return ((n&((1<<(m:=n.bit_length())+(m&1))-1)//3)<<1)+1 # Chai Wah Wu, Jan 30 2023 CROSSREFS Cf. A006257, A063694, A088443, A088452, A090569, A145812. Sequence in context: A082511 A265307 A133579 * A037095 A160654 A146436 Adjacent sequences: A088439 A088440 A088441 * A088443 A088444 A088445 KEYWORD nonn,easy AUTHOR N. J. A. Sloane, Nov 09 2003 EXTENSIONS More terms from Emeric Deutsch, May 27 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 21 07:13 EDT 2024. Contains 371850 sequences. (Running on oeis4.)