|
|
A088250
|
|
a(n) is the smallest number k such that r*k + 1 is prime for all r = 1 to n.
|
|
11
|
|
|
1, 1, 2, 330, 10830, 25410, 512820, 512820, 12960606120, 434491727670, 1893245380950, 71023095613470, 878232256181280, 11429352906540438870
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,3
|
|
COMMENTS
|
Conjectures: (1) Sequence is infinite. (2) For every n there are infinitely many arithmetic progressions with n successive primes.
Both conjectures follow from Dickson's conjecture. [Charles R Greathouse IV, Mar 14 2011]
|
|
LINKS
|
Table of n, a(n) for n=1..14.
Carlos Rivera, Puzzle 379. SG primes and its prime average, The Prime Puzzles and Problems Connection.
|
|
EXAMPLE
|
a(11) = 1893245380950 because all eleven numbers 1*1893245380950 + 1, 2*1893245380950 + 1, 3*1893245380950 + 1, ..., 10*1893245380950 + 1 & 11*1893245380950 + 1 are prime and 1893245380950 is the smallest number with such property.
|
|
MATHEMATICA
|
a[n_] := Block[{k = If[n < 4, 1, 6], s}, s = k; While[! AllTrue[k Range[n] + 1, PrimeQ], k += s]; k]; Array[a, 8] (* Giovanni Resta, Mar 31 2017 *)
|
|
CROSSREFS
|
Cf. A088251, A088252, A088651, A125838, A125839.
Sequence in context: A012606 A012729 A173750 * A142355 A203608 A264942
Adjacent sequences: A088247 A088248 A088249 * A088251 A088252 A088253
|
|
KEYWORD
|
nonn,more
|
|
AUTHOR
|
Amarnath Murthy, Sep 26 2003
|
|
EXTENSIONS
|
Edited by Don Reble, Sep 29 2003
Entry revised by N. J. A. Sloane, Jan 05 2007
a(14) from Giovanni Resta, Mar 31 2017
|
|
STATUS
|
approved
|
|
|
|