login
A088248
Orders of twisted fields.
2
27, 64, 81, 125, 243, 256, 343, 512, 625, 729, 1024, 1331, 2187, 2197, 2401, 3125, 4096, 4913, 6561, 6859, 12167, 14641, 15625, 16384, 16807, 19683, 24389, 28561, 29791, 32768, 50653, 59049, 65536, 68921, 78125, 79507, 83521, 103823, 117649
OFFSET
1,1
COMMENTS
Subset of prime powers A000961. Subset of orders of semifields A088247.
REFERENCES
D. E. Knuth, ``Finite Semifields and Projective Planes'' Selected Papers on Discrete Mathematics, Center for the Study of Language and Information, Leland Stanford Junior University, CA, 2003, p336.
LINKS
Chai Wah Wu, Table of n, a(n) for n = 1..10000 (terms 1..1000 from T. D. Noe)
D. E. Knuth, Finite Semifields and Projective Planes, Journal of Algebra, Volume 2, Issue 2, June 1965, Pages 182-217.
FORMULA
All p^k > 16, prime p, k>=3, except 2^q, q prime.
MATHEMATICA
okQ[n_] := Module[{f, p, k}, If[n <= 16, False, f = FactorInteger[n]; If[Length[f] > 1, False, {p, k} = First[f]; k >= 3 && Not[p == 2 && PrimeQ[k]]]]]; Select[Range[10^6], okQ] (* Jean-François Alcover, Jul 07 2015 *)
PROG
(Python)
from math import isqrt
from sympy import primerange, integer_nthroot, primepi
def A088248(n):
def g(x, a, b, c, m): yield from (((d, ) for d in enumerate(primerange(b+1, isqrt(x//c)+1), a+1)) if m==2 else (((a2, b2), )+d for a2, b2 in enumerate(primerange(b+1, integer_nthroot(x//c, m)[0]+1), a+1) for d in g(x, a2, b2, c*b2, m-1)))
def f(x): return int(n+x+primepi(x.bit_length()-1)-sum(primepi(integer_nthroot(x, k)[0]) for k in range(3, x.bit_length())))
def bisection(f, kmin=0, kmax=1):
while f(kmax) > kmax: kmax <<= 1
while kmax-kmin > 1:
kmid = kmax+kmin>>1
if f(kmid) <= kmid:
kmax = kmid
else:
kmin = kmid
return kmax
return bisection(f, n, n) # Chai Wah Wu, Sep 11 2024
CROSSREFS
Sequence in context: A304563 A304557 A372976 * A319389 A340700 A106200
KEYWORD
easy,nonn,nice
AUTHOR
Marc LeBrun, Sep 25 2003
STATUS
approved