

A088149


Smallest prime which when rotated through all its binary places produces n primes, not counting any repeats.


1



2, 5, 11, 43, 167, 2143, 2423, 2687, 41903, 548543, 711679, 786431, 9010423, 10452461
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

It is probably not the case that this always produces the same bit cycle as A088148.  Franklin T. AdamsWatters, Mar 29 2014


LINKS

Table of n, a(n) for n=1..14.


EXAMPLE

a(5) = 167 because 167 in base two is 10100111. This will produce eight possible new numbers; 01001111 = 79, 10011110 = 158, 00111101 = 61, 01111010 = 122, 11110100 = 244, 11101001 = 233, 11010011 = 211 and back to the beginning 10100111 = 167. Of those eight numbers (79, 158, 61, 122, 244, 233, 211 & 167) only five of them are primes. Notice that this is the same bit cycle as in A088148 but rotated differently.


MATHEMATICA

f[n_] := Count[ PrimeQ[ Union[ Table[ FromDigits[ RotateLeft[ IntegerDigits[n, 2], i], 2], {i, 1, Floor[ Log[2, n] + 1]}]]], True]; NextPrim[n_] := Block[{k = n + 1}, While[ !PrimeQ[k], k++ ]; k]; a = Table[0, {100}]; k = 2; Do[c = f[k]; If[c < 101 && a[[c]] == 0, a[[c]] = k]; k = NextPrim[k], {n, 1, 2750000}]; a


CROSSREFS

Cf. A088148.
Sequence in context: A172297 A128231 A088148 * A153989 A160859 A106887
Adjacent sequences: A088146 A088147 A088148 * A088150 A088151 A088152


KEYWORD

nonn,base


AUTHOR

Robert G. Wilson v, Sep 19 2003


EXTENSIONS

Edited by Franklin T. AdamsWatters, Mar 29 2014


STATUS

approved



