login
A087708
First integer > n reached under iteration of map x -> (5/3)*ceiling(x) when started at n, or -1 if no such integer is ever reached.
8
20, 20, 5, 20, 15, 10, 20, 40, 15, 1770, 90, 20, 290, 40, 25, 45, 1770, 30, 90, 95, 35, 290, 65, 40, 70, 345, 45, 220, 1770, 50, 145, 90, 55, 95, 165, 60, 290, 17845, 65, 520, 115, 70, 120, 345, 75, 215, 220, 80, 1770, 140, 85, 145, 415, 90, 715, 1215, 95, 270, 165, 100, 170
OFFSET
1,1
COMMENTS
It is conjectured that an integer is always reached.
LINKS
J. C. Lagarias and N. J. A. Sloane, Approximate squaring (pdf, ps), Experimental Math., 13 (2004), 113-128.
MAPLE
c2 := proc(x, y) x*ceil(y); end; r := 5/3; ch := proc(x) local n, y; global r; y := c2(r, x); for n from 1 to 20 do if whattype(y) = 'integer' then RETURN([x, n, y]); else y := c2(r, y); fi; od: RETURN(['NULL', 'NULL', 'NULL']); end; [seq(ch(n)[3], n=1..100)];
PROG
(Python)
from fractions import Fraction
def A087708(n):
x = Fraction(n)
while x.denominator > 1 or x<=n:
x = Fraction(5*x.__ceil__(), 3)
return int(x) # Chai Wah Wu, Sep 02 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Sep 29 2003
STATUS
approved