The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A220022 The period with which the powers of n repeat mod 100. 6
 1, 1, 20, 20, 10, 1, 5, 4, 20, 10, 1, 10, 20, 20, 10, 2, 5, 20, 4, 10, 1, 5, 20, 20, 2, 1, 1, 20, 20, 10, 1, 10, 4, 20, 10, 2, 5, 20, 20, 10, 1, 5, 20, 4, 10, 1, 5, 20, 20, 2, 1, 2, 20, 20, 10, 2, 5, 4, 20, 10, 1, 5, 20, 20, 10, 1, 5, 20, 4, 10, 1, 10, 20, 20, 2, 2, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS a(n) will always be a divisor of Phi(100) = 40. This sequence is periodic with a period of 100 because n^i mod 100 = (n + 100)^i mod 100. For the odd numbers n ending in {1, 3, 7, 9} which are coprime to 10, we can expect the powers of n mod 100 to loop back to 1, with the value of n^a(n) mod 100 = 1, but for the other numbers n that are not coprime to 10, they do not loop back to 1. For the even numbers n ending in {2, 4, 6, 8}, the value of n^a(n) mod 100 will be equal to 76. For the numbers n that are congruent to 5 (mod 20), the value of n^i mod 100 will be equal to 25, for all i >= 2. For the numbers n that are congruent to 15 (mod 20), the value of n^a(n) mod 100 will be equal to 25, with n^i mod 100 = 25 for the even values of i and n^i mod 100 = 75 for the odd values of i, for all i >= 2. For the numbers n ending in 0, i.e., that are congruent to 0 (mod 10), the value of n^i mod 100 will be equal to 0, for all i >= 2. LINKS T. D. Noe, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1). EXAMPLE a(2) = 20 since 2^i mod 100, for i = 2..22 = {04, 08, 16, 32, 64, 28, 56, 12, 24, 48, 96, 92, 84, 68, 36, 72, 44, 88, 76, 52, 04}. a(3) = 20 since 3^i mod 100, for i = 0..20 = {01, 03, 09, 27, 81, 43, 29, 87, 61, 83, 49, 47, 41, 23, 69, 07, 21, 63, 89, 67, 01}. But a(7) = 4 since 7^i mod 100, for i = 0..4 = {01, 07, 49, 43, 01}. MATHEMATICA Flatten[Table[s = Table[PowerMod[n, e, 100], {e, 2, 100}]; Union[Differences[Position[s, s[[1]]]]], {n, 0, 100}]] (* T. D. Noe, Dec 14 2012 *) PROG (PARI) for(n=0, 100, x=(n*n)%100; y=(n*n*n)%100; z=1; while(x!=y, x=(x*n)%100; y=(y*n*n)%100; z++); print1(z", ")) CROSSREFS Cf. A173635 (period with which the powers of n repeat mod 10). Sequence in context: A267058 A205545 A087708 * A217517 A332561 A278831 Adjacent sequences: A220019 A220020 A220021 * A220023 A220024 A220025 KEYWORD nonn,base,easy AUTHOR V. Raman, Dec 13 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 23 13:32 EDT 2024. Contains 373648 sequences. (Running on oeis4.)