OFFSET
0,1
COMMENTS
a(n+1)/a(n) converges to (137+sqrt(18773))/2 = 137.00729888121410965...
a(0)/a(1) = 2/137;
a(1)/a(2) = 137/18771;
a(2)/a(3) = 18771/2571764;
a(3)/a(4) = 2571764/352350439; ... etc.
Lim_{n->infinity} a(n)/a(n+1) = 0.00729888121410965... = 2/(137+sqrt(18773)) = (sqrt(18773)-137)/2.
LINKS
Tanya Khovanova, Recursive Sequences
Index entries for linear recurrences with constant coefficients, signature (137,1).
FORMULA
a(n) = ((137+sqrt(18773))/2)^n + ((137-sqrt(18773))/2)^n.
(a(n))^2 = a(2*n)-2 if n = 1, 3, 5, ..., (a(n))^2 = a(2n) + 2 if n = 2, 4, 6, ...
G.f.: (2-137*x)/(1-137*x-x^2). - Philippe Deléham, Nov 23 2008
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Nikolay V. Kosinov (kosinov(AT)unitron.com.ua), Oct 25 2003
STATUS
approved