login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A087384
a(n) is the smallest prime == 1 (mod F(n)) where F(n) is the n-th Fibonacci number.
1
2, 2, 3, 7, 11, 17, 53, 43, 103, 331, 179, 433, 467, 5279, 1831, 5923, 6389, 7753, 8363, 27061, 21893, 35423, 1146281, 92737, 3001001, 1213931, 392837, 1906867, 4113833, 4992241, 5385077, 17426473, 14098313, 91246193, 110729581, 44791057, 144946903, 938116057
OFFSET
1,1
LINKS
EXAMPLE
Prime corresponding to the Fibonacci number F(7) = 13 is 4*13+1 = 53.
MAPLE
F:= n-> (<<0|1>, <1|1>>^n)[1, 2]:
a:= proc(n) option remember; local f, p; f:= F(n);
for p from f+1 by f while not isprime(p) do od; p
end:
seq(a(n), n=1..50);
MATHEMATICA
F[n_] := MatrixPower[{{0, 1}, {1, 1}}, n][[1, 2]];
a[n_] := a[n] = Module[{f = F[n], p}, For[p = f+1, !PrimeQ[p], p += f]; p];
Array[a, 50] (* Jean-François Alcover, Nov 18 2020, after Alois P. Heinz *)
CROSSREFS
Sequence in context: A036060 A227300 A065383 * A179283 A234850 A127165
KEYWORD
nonn
AUTHOR
Amarnath Murthy, Sep 09 2003
EXTENSIONS
Offset corrected by Alois P. Heinz, Jul 09 2017
STATUS
approved