login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A087383
Primes p such that p is a twin prime and prime(prime(p)) is also a twin prime.
1
3, 5, 7, 13, 29, 41, 43, 59, 71, 103, 107, 137, 149, 193, 199, 271, 281, 311, 347, 349, 433, 463, 569, 617, 619, 811, 827, 857, 859, 881, 1031, 1153, 1229, 1289, 1481, 1607, 1699, 1723, 1933, 1949, 1951, 1997, 2113, 2551, 2593, 2657, 3001, 3257, 3373, 3463
OFFSET
1,1
LINKS
EXAMPLE
29 is in the sequence because 29 and 31 are twin primes and prime(prime(29)) = prime(109) = 599, which is a twin prime with 601.
MATHEMATICA
TwinPrimeQ[n_]:=If[PrimeQ[n], If[PrimeQ[n-2]||PrimeQ[n+2], True, False], False](*TwinPrimeQ*) lst={}; Do[If[TwinPrimeQ[Prime[Prime[n]]]&&TwinPrimeQ[n], AppendTo[lst, n]], {n, 7!}]; lst (* Vladimir Joseph Stephan Orlovsky, Sep 07 2008 *)
PROG
(PARI) twips(n) = { c1=0; c2=0; forprime(x=3, n, if(isprime(x+2), c1++); x1=prime(prime(x)); if(isprime(x-2) || isprime(x+2), if(isprime(x1-2) || isprime(x1+2), print1(x", "); c2++; ) ) ); print(); print(c2/c1+.0) }
CROSSREFS
Sequence in context: A224222 A224221 A128547 * A038928 A359436 A225504
KEYWORD
easy,nonn
AUTHOR
Cino Hilliard, Oct 21 2003
STATUS
approved