OFFSET
1,2
LINKS
Colin Barker, Table of n, a(n) for n = 1..1000
J.-P. Bode and H. Harborth, Independence for knights on hexagon and triangle boards, Discrete Math., 272 (2003), 27-35.
Index entries for linear recurrences with constant coefficients, signature (2,0,-2,1).
FORMULA
a(n) = ceiling(n^2/2) except for n=3.
From Colin Barker, Feb 02 2016: (Start)
a(n) = (2*n^2-(-1)^n+1)/4 for n>3.
a(n) = n^2/2 for even n>3; a(n) = (n^2+1)/2 for odd n>3.
a(n) = 2*a(n-1)-2*a(n-3)+a(n-4) for n>3.
G.f.: x*(1+2*x^2-2*x^3+2*x^5-x^6) / ((1-x)^3*(1+x)). (End)
MATHEMATICA
LinearRecurrence[{2, 0, -2, 1}, {1, 2, 6, 8, 13, 18, 25}, 60] (* Harvey P. Dale, Mar 14 2018 *)
PROG
(PARI) Vec(x*(1+2*x^2-2*x^3+2*x^5-x^6)/((1-x)^3*(1+x)) + O(x^100)) \\ Colin Barker, Feb 02 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Oct 21 2003
EXTENSIONS
More terms from David Wasserman, May 06 2005
STATUS
approved