login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A087219 Satisfies A(x) = f(x) + x*A(x)*f(x)^2, where f(x) = Sum_{k>=0} x^((3^n-1)/2) and f(x)^2 = 2 - f(x^2) + 2*Sum_{n>0} x^A023745(n). Also, A(x) = f(x)*B(x), where B(x) = Sum_{k>=0} A087218(k)*x^k. 2
1, 2, 4, 9, 20, 44, 99, 219, 487, 1083, 2406, 5349, 11889, 26426, 58739, 130563, 290208, 645062, 1433814, 3187014, 7083951, 15745878, 34999212, 77794638, 172918335, 384354909, 854326387, 1898957331, 4220914872, 9382055124 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Table of n, a(n) for n=0..29.

FORMULA

a(n) = A078932(2n+1). a(m) = 1 (mod 3) when m = (3^n-1)/2 (mod 3), else a(m) = 2 (mod 3) when m = A023745(n), otherwise a(m) = 0 (mod 3).

EXAMPLE

Given f(x) = 1 + x + x^4 + x^13 + x^40 + x^121 + ... so that f(x)^2 = 1 + 2x + x^2 + 2x^4 + 2x^5 + x^8 + 2*x^13 + ... then A(x) = (1 + x + x^4 + ...) + x*A(x)*(1 + 2x + x^2 + 2x^4 + 2x^5 + ...) = 1 + 2x + 4x^2 + 9x^3 + 20x^4 + 44x^5 + ...

PROG

(PARI) a(n)=local(A, m); if(n<1, 1, m=1; A=1+O(x); while(m<=2*n+1, m*=3; A=1/(1/subst(A, x, x^3)-x)); polcoeff(A, 2*n+1));

CROSSREFS

Cf. A078932, A087218.

Sequence in context: A008998 A024736 A024562 * A214952 A199296 A219229

Adjacent sequences:  A087216 A087217 A087218 * A087220 A087221 A087222

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Aug 27 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 5 08:36 EST 2021. Contains 349543 sequences. (Running on oeis4.)