login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A087221
Number of compositions (ordered partitions) of n into powers of 4.
5
1, 1, 1, 1, 2, 3, 4, 5, 7, 10, 14, 19, 26, 36, 50, 69, 96, 133, 184, 254, 352, 488, 676, 935, 1294, 1792, 2482, 3436, 4756, 6584, 9116, 12621, 17473, 24190, 33490, 46365, 64190, 88868, 123034, 170334, 235818, 326478, 451994, 625764, 866338, 1199400, 1660510
OFFSET
0,5
COMMENTS
Series trisections have a common ratio:
sum(k>=0, a(3k+1)*x^k) / sum(k>=0, a(3k)*x^k)
= sum(k>=0, a(3k+2)*x^k) / sum(k>=0, a(3k+1)*x^k)
= sum(k>=0, a(3k+3)*x^k) / sum(k>=0, a(3k+2)*x^k)
= sum(k>=0, x^((4^n-1)/3) ) = (1 + x + x^5 + x^21 + x^85 + x^341 +...).
FORMULA
G.f.: 1/( 1 - sum(k>=0, x^(4^k) ) ). [Joerg Arndt, Oct 21 2012]
G.f. satisfies A(x) = A(x^4)/(1 - x*A(x^4)), A(0) = 1.
a(n) ~ c * d^n, where d=1.384450093664460722709070772652942206959424183007359023442195..., c=0.526605891697738213614083414993893445498621299371909641096106... - Vaclav Kotesovec, May 01 2014
EXAMPLE
A(x) = A(x^4) + x*A(x^4)^2 + x^2*A(x^4)^3 + x^3*A(x^4)^4 + ...
= 1 +x + x^2 +x^3 +2x^4 +3x^5 +5x^6 +7x^7 + 10x^8 +...
MAPLE
a:= proc(n) option remember;
`if`(n=0, 1, add(a(n-4^i), i=0..ilog[4](n)))
end:
seq(a(n), n=0..50); # Alois P. Heinz, Jan 11 2014
MATHEMATICA
a[n_] := a[n] = If[n==0, 1, Sum[a[n-4^i], {i, 0, Log[4, n]}]]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Mar 24 2015, after Alois P. Heinz *)
PROG
(PARI) a(n)=local(A, m); if(n<1, n==0, m=1; A=1+O(x); while(m<=n, m*=4; A=1/(1/subst(A, x, x^4)-x)); polcoeff(A, n))
(PARI)
N=66; x='x+O('x^N);
Vec( 1/( 1 - sum(k=0, ceil(log(N)/log(4)), x^(4^k)) ) )
/* Joerg Arndt, Oct 21 2012 */
CROSSREFS
Cf. A078932, A087222, A087232, A087224. Different from A003269.
Sequence in context: A003269 A367794 A352043 * A352041 A295072 A206739
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Aug 27 2003
STATUS
approved