login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A087032
a(n) = 1 if 2*A151800(n) - n is prime, otherwise 0, where A151800(n) is the smallest prime > n.
2
1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0
OFFSET
1,1
COMMENTS
There is no subsequence of two ones; number of zeros in each group is odd, see A087033.
FORMULA
a(n) = 1 if A087030(n) is prime, 0 if it is composite.
a(n) = A010051((2*A151800(n))-n). - Antti Karttunen, Oct 09 2018
EXAMPLE
a(1)=1 because the smallest prime > 1 is 2 and 2*2-1=3 is prime.
MATHEMATICA
bb={}; Do[bb={bb, If[PrimeQ[2(Prime[PrimePi[n]+1])-n], 1, 0]}, {n, 1000}]; Flatten[bb]
PROG
(PARI) A087032(n) = isprime((2*nextprime(1+n))-n); \\ Antti Karttunen, Oct 09 2018
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Zak Seidov, Jul 31 2003
EXTENSIONS
Definition edited by Antti Karttunen, Oct 09 2018
STATUS
approved