login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A225569
Decimal expansion of Sum_{n>=0} 1/10^(3^n), a transcendental number.
4
1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
OFFSET
0,1
COMMENTS
According to the Thue-Siegel-Roth theorem, this number is transcendental.
As a sequence, characteristic sequence for powers of 3. - Franklin T. Adams-Watters, Aug 07 2013
Actually, characteristic function for 3^k - 1 (A024023), with the current starting offset 0. - Antti Karttunen, Nov 19 2017
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, p. 171.
FORMULA
From Antti Karttunen, Nov 19 2017: (Start)
a(n) = A063524(A053735(1+n)).
a(n) = abs(A154271(1+n)). (End)
From Amiram Eldar, Nov 02 2023: (Start)
With offset 1:
Completely multiplicative with a(3^e) = 1, and a(p^e) = 0 for p != 3.
Dirichlet g.f.: 1/(1-3^(-s)). (End)
EXAMPLE
0.101000001000000000000000001000000000000000000000000000000000000000000000000000001...
MATHEMATICA
(* n = 4 is sufficient to get 100 digits *) Sum[1/10^(3^n), {n, 0, 4}] // RealDigits[#, 10, 100]& // First
PROG
(PARI) a(n) = if(n+1 == 3^valuation(n+1, 3), 1, 0); \\ Amiram Eldar, Nov 02 2023
CROSSREFS
KEYWORD
nonn,easy,cons
AUTHOR
STATUS
approved