login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A086788
Primes found among the denominators of the continued fraction rational approximations to Pi.
3
7, 113, 265381, 842468587426513207
OFFSET
1,1
COMMENTS
The next term is too large to include.
EXAMPLE
The first 5 rational approximations to Pi are 3/1, 22/7, 333/106, 355/113, 103993/33102; of these, the prime denominators are 7 and 113.
PROG
(PARI)
cfracdenomprime(m, f) = { default(realprecision, 3000); cf = vector(m+10); x=f; for(n=0, m, i=floor(x); x=1/(x-i); cf[n+1] = i; ); for(m1=0, m, r=cf[m1+1]; forstep(n=m1, 1, -1, r = 1/r; r+=cf[n]; ); numer=numerator(r); denom=denominator(r); if(ispseudoprime(denom), print1(denom, ", ")); ) }
(PARI)
default(realprecision, 10^5);
cf=contfrac(Pi);
n=0;
{ for(k=1, #cf, \\ generate b-file
pq = contfracpnqn( vector(k, j, cf[j]) );
p = pq[1, 1]; q = pq[2, 1];
\\ if ( ispseudoprime(p), n+=1; print(n, " ", p) ); \\ A086785
if ( ispseudoprime(q), n+=1; print(n, " ", q) ); \\ A086788
); }
/* Joerg Arndt, Apr 21 2013 */
CROSSREFS
Sequence in context: A371328 A159552 A228929 * A199672 A240288 A220343
KEYWORD
easy,nonn
AUTHOR
Cino Hilliard, Aug 04 2003; corrected Jul 30 2004
EXTENSIONS
Offset corrected by Joerg Arndt, Apr 21 2013
STATUS
approved