login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Primes found among the denominators of the continued fraction rational approximations to Pi.
3

%I #33 Nov 23 2019 04:45:10

%S 7,113,265381,842468587426513207

%N Primes found among the denominators of the continued fraction rational approximations to Pi.

%C The next term is too large to include.

%H Joerg Arndt, <a href="/A086788/b086788.txt">Table of n, a(n) for n = 1..10</a>

%H Cino Hilliard, <a href="http://groups.msn.com/BC2LCC/continuedfractions.msnw">Continued fractions rational approximation of numeric constants</a>. [needs login]

%e The first 5 rational approximations to Pi are 3/1, 22/7, 333/106, 355/113, 103993/33102; of these, the prime denominators are 7 and 113.

%o (PARI)

%o cfracdenomprime(m,f) = { default(realprecision,3000); cf = vector(m+10); x=f; for(n=0,m, i=floor(x); x=1/(x-i); cf[n+1] = i; ); for(m1=0,m, r=cf[m1+1]; forstep(n=m1,1,-1, r = 1/r; r+=cf[n]; ); numer=numerator(r); denom=denominator(r); if(ispseudoprime(denom),print1(denom,",")); ) }

%o (PARI)

%o default(realprecision,10^5);

%o cf=contfrac(Pi);

%o n=0;

%o { for(k=1, #cf, \\ generate b-file

%o pq = contfracpnqn( vector(k,j, cf[j]) );

%o p = pq[1,1]; q = pq[2,1];

%o \\ if ( ispseudoprime(p), n+=1; print(n," ",p) ); \\ A086785

%o if ( ispseudoprime(q), n+=1; print(n," ",q) ); \\ A086788

%o ); }

%o /* _Joerg Arndt_, Apr 21 2013 */

%Y Cf. A086791, A086785.

%K easy,nonn

%O 1,1

%A _Cino Hilliard_, Aug 04 2003; corrected Jul 30 2004

%E Offset corrected by _Joerg Arndt_, Apr 21 2013