login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A086703 Continued fraction expansion of Levy's constant. 1
3, 3, 1, 1, 1, 2, 29, 1, 130, 1, 12, 3, 8, 2, 4, 1, 3, 55, 2, 4, 2, 2, 1, 797, 1, 1, 6, 2, 4, 1, 13, 2, 1, 6, 1, 4, 2, 1, 9, 3, 2, 2, 2, 2, 4, 1, 2, 5, 1, 1, 1, 6, 2, 2, 1, 32, 1, 2, 1, 3, 2, 1, 15, 3, 1, 1, 1, 2, 1, 1, 105, 1, 79, 1, 4, 2, 3, 11, 1, 6, 1, 7, 2, 1, 3, 1, 9, 1, 4, 9, 1, 1, 3, 1, 1, 15, 1, 6 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

Let P(k)/Q(k) denote the k-th convergent of x, then for almost all real values 0 < x < 1 we have limit k -> infinity Q(k)^(1/k) = L.

REFERENCES

Paul Lévy, Théorie de l'addition des variables aléatoires, 2nd. ed., Editions Jacques Gabay, chap IX, pp. 316-320.

LINKS

Patrick McKinley, Table of n, a(n) for n = 0..20298 (computed using bc with scale of 20806, Mar 02 2013)

Steven R. Finch, Khintchine's Constant [Broken link]

Steven R. Finch, Khintchine's Constant [From the Wayback machine]

FORMULA

L = exp(Pi^2/12/log(2)) = 3.27582291872181115978768...

PROG

(PARI) contfrac(exp(Pi^2/12/log(2))) \\ Charles R Greathouse IV, Mar 06 2013

CROSSREFS

Cf. A002210, A002211.

Sequence in context: A127197 A114231 A079075 * A242849 A072917 A319861

Adjacent sequences:  A086700 A086701 A086702 * A086704 A086705 A086706

KEYWORD

cofr,nonn

AUTHOR

Benoit Cloitre, Jul 28 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 24 13:17 EDT 2019. Contains 324325 sequences. (Running on oeis4.)