login
A086640
Arrange n^2 octagons that each have area 7 so that they leave (n-1)^2 square gaps each with area 2; a(n) is the total area of these polygons.
0
7, 30, 71, 130, 207, 302, 415, 546, 695, 862, 1047, 1250, 1471, 1710, 1967, 2242, 2535, 2846, 3175, 3522, 3887, 4270, 4671, 5090, 5527, 5982, 6455, 6946, 7455, 7982, 8527, 9090, 9671, 10270, 10887, 11522, 12175, 12846, 13535, 14242, 14967, 15710
OFFSET
1,1
REFERENCES
Keith Devlin, "The language of mathematics", Henry Holt, NY, plate 9 after p. 249.
FORMULA
a(n) = 9n^2-4n+2.
G.f. -x*(2*x+7)*(1+x) / (x-1)^3 . - R. J. Mathar, Sep 15 2012
PROG
(PARI) a(n)=9*n^2-4*n+2 \\ Charles R Greathouse IV, Jun 17 2017
CROSSREFS
Sequence in context: A063148 A116283 A139274 * A083474 A030440 A256225
KEYWORD
nonn,easy,less
AUTHOR
Jun Mizuki (suzuki32(AT)sanken.osaka-u.ac.jp), Jul 26 2003
EXTENSIONS
Edited and extended by David Wasserman, Jun 20 2007
STATUS
approved