login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A086638
Numbers with no 11 or 000 in their binary expansion.
3
0, 1, 2, 4, 5, 9, 10, 18, 20, 21, 36, 37, 41, 42, 73, 74, 82, 84, 85, 146, 148, 149, 164, 165, 169, 170, 292, 293, 297, 298, 329, 330, 338, 340, 341, 585, 586, 594, 596, 597, 658, 660, 661, 676, 677, 681, 682, 1170, 1172, 1173
OFFSET
0,3
COMMENTS
The number of n-bit numbers in this sequence for n>1 is given by a(n+6) where a is the Padovan sequence A000931.
MATHEMATICA
Select[Range[0, 1200], And[AllTrue[#1, # < 2 &], AllTrue[#2, # < 3 &]] & @@ {Part[#, 2 Range@ Ceiling[Length[#]/2] - 1], Part[#, 2 Range@ Floor[Length[#]/2]]} &@ Map[Length, Split@ IntegerDigits[#, 2]] &] (* Michael De Vlieger, Dec 26 2018 *)
Select[Range[0, 1200], SequenceCount[IntegerDigits[#, 2], {1, 1}] == SequenceCount[ IntegerDigits[ #, 2], {0, 0, 0}]==0&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, May 16 2019 *)
PROG
(Python)
def A086638():
yield 0
for x in A086638():
if x & 3:
yield 2*x
if not (x & 1):
yield 2*x + 1
a = A086638(); print([next(a) for _ in range(100)])
CROSSREFS
Cf. A000931.
Sequence in context: A070924 A351993 A266197 * A319423 A265748 A191001
KEYWORD
easy,base,nonn
AUTHOR
David Eppstein, Sep 14 2003
STATUS
approved