login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A086638
Numbers with no 11 or 000 in their binary expansion.
3
0, 1, 2, 4, 5, 9, 10, 18, 20, 21, 36, 37, 41, 42, 73, 74, 82, 84, 85, 146, 148, 149, 164, 165, 169, 170, 292, 293, 297, 298, 329, 330, 338, 340, 341, 585, 586, 594, 596, 597, 658, 660, 661, 676, 677, 681, 682, 1170, 1172, 1173
OFFSET
0,3
COMMENTS
The number of n-bit numbers in this sequence for n>1 is given by a(n+6) where a is the Padovan sequence A000931.
MATHEMATICA
Select[Range[0, 1200], And[AllTrue[#1, # < 2 &], AllTrue[#2, # < 3 &]] & @@ {Part[#, 2 Range@ Ceiling[Length[#]/2] - 1], Part[#, 2 Range@ Floor[Length[#]/2]]} &@ Map[Length, Split@ IntegerDigits[#, 2]] &] (* Michael De Vlieger, Dec 26 2018 *)
Select[Range[0, 1200], SequenceCount[IntegerDigits[#, 2], {1, 1}] == SequenceCount[ IntegerDigits[ #, 2], {0, 0, 0}]==0&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, May 16 2019 *)
PROG
(Python)
def A086638():
yield 0
for x in A086638():
if x & 3:
yield 2*x
if not (x & 1):
yield 2*x + 1
a = A086638(); print([next(a) for _ in range(100)])
CROSSREFS
Cf. A000931.
Sequence in context: A070924 A351993 A266197 * A319423 A265748 A191001
KEYWORD
easy,base,nonn
AUTHOR
David Eppstein, Sep 14 2003
STATUS
approved