The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A086570 Expansion of (1 + 3x + 5x^2 + 7x^3 + ...) / (1 - 2x + 3x^2 - 4x^3 + ...). 5
 1, 5, 12, 20, 28, 36, 44, 52, 60, 68, 76, 84, 92, 100, 108, 116, 124, 132, 140, 148, 156, 164, 172, 180, 188, 196, 204, 212, 220, 228, 236, 244, 252, 260, 268, 276, 284, 292, 300, 308, 316, 324, 332, 340, 348, 356, 364, 372, 380, 388, 396, 404, 412, 420, 428 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Row sums of number triangle A113128. - Paul Barry, Oct 14 2005 The Engel expansion of 1 + exp(1/8)*sqrt(2*Pi)*erf(1/(2*sqrt(2)))/5 = 1.2175306077808... - Benedict W. J. Irwin, Dec 16 2016 LINKS Table of n, a(n) for n=0..54. Leo Tavares, Square illustration Index entries for linear recurrences with constant coefficients, signature (2,-1). FORMULA a(0) = 1, a(1) = 5, a(2) = 12; then a(n+1) = a(n) + 8, n > 2. From Paul Barry, Oct 14 2005: (Start) G.f.: (1+x)^3/(1-x)^2; a(n) = 8n - 4 + 4*C(0, n) + C(1, n); a(n) = C(n+1, n) + 3*C(n, n-1) + 3*C(n-1, n-2) + C(n-2, n-3). (End) a(n) = A017113(n-1), n > 1. - R. J. Mathar, Sep 12 2008 EXAMPLE a(6) = 44 = 8 + a(5) = 8 + 36. MATHEMATICA CoefficientList[Series[(z^3 + 3*z^2 + 3*z + 1)/(z - 1)^2, {z, 0, 100}], z] (* and *) Join[{1, 5}, Table[4*(2*(n + 1) + 1), {n, 0, 100}]] (* Vladimir Joseph Stephan Orlovsky, Jul 17 2011 *) PROG (PARI) a(n)=if(n>1, 8*n-4, 4*n+1) \\ Charles R Greathouse IV, Dec 16 2016 CROSSREFS Cf. A078370, A016754. Sequence in context: A099192 A047077 A326663 * A366101 A270333 A270938 Adjacent sequences: A086567 A086568 A086569 * A086571 A086572 A086573 KEYWORD nonn,easy AUTHOR Gary W. Adamson, Jul 22 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 20 15:17 EDT 2024. Contains 374459 sequences. (Running on oeis4.)