OFFSET
1,2
FORMULA
r = sum_{n=1..infinity} prime(n)/10^b(n), where b(n+1)=b(n)+floor(log[10] prime(n))+1, b(1)=1. (Edited by M. F. Hasler, Oct 17 2013)
EXAMPLE
r=0.235811317192329313741434753596167717...
= 2/10^1 + 3/10^2 + 5/10^3 + 7/10^4 + 11/10^5 + 13/10^7 + ..., the exponents being increased by the length of the previous prime. - M. F. Hasler, Oct 17 2013
MATHEMATICA
(* number of powers of ten in the Primes as a sequence*) byte[n_Integer?Positive] := byte[n] =byte[n-1]+Floor[Log[Prime[n-1]]/Log[10]]+1 byte[0]=byte[1] = 1 b=Table[N[Prime[n]*10^(-byte[n]), Digits], {n, 1, Digits}] r=Apply[Plus, b]
CROSSREFS
KEYWORD
nonn,base,cofr
AUTHOR
Roger L. Bagula, Aug 26 2003
EXTENSIONS
Edited by M. F. Hasler, Oct 17 2013
STATUS
approved