|
|
A085830
|
|
Least number k such that (10^n)^k < k!.
|
|
2
|
|
|
2, 25, 269, 2714, 27177, 271822, 2718274, 27182809, 271828173, 2718281817, 27182818272, 271828182832, 2718281828444, 27182818284575, 271828182845887, 2718281828459027, 27182818284590433, 271828182845904503
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
COMMENTS
|
A085830(n) = A065027(10^n). This should confirm that the lim n -> infinity of A065027(n)/n -> e from below.
a(63) differs from the Floor(10^63* e) by only 33.
|
|
LINKS
|
Table of n, a(n) for n=0..17.
|
|
MATHEMATICA
|
LogBaseBStirling[b_, n_] := Block[{}, N[ Log[b, 2*Pi*n]/2 + n*Log[b, n/E] + Log[b, 1 + 1/(12n) + 1/(288n^2) - 139/(51840n^3) - 571/(2488320n^4) + 163879/(209018880n^5)], 64]]; f[0] = 2; f[n_] := f[n] = Block[{k = 10*g[n - 1]}, While[ LogBaseBStirling[10^n, k] <= k, k++ ]; k]; Table[ f[n], {n, 1, 18}]
|
|
CROSSREFS
|
Cf. A065027, A011544.
Sequence in context: A229975 A174970 A249893 * A270346 A212022 A198710
Adjacent sequences: A085827 A085828 A085829 * A085831 A085832 A085833
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Robert G. Wilson v, Jul 13 2003
|
|
STATUS
|
approved
|
|
|
|