login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A085560
a(0) = 1, then (for n>0) a(n) = floor[(e + 1/e)*a(n-1) - a(n-2)].
0
1, 3, 8, 21, 56, 151, 410, 1114, 3027, 8227, 22362, 60785, 165230, 449141, 1220891, 3318725, 9021229, 24522242, 66658364, 181196219, 492542389, 1338869025, 3639423341, 9892978333, 26891903231, 73099771885, 198705781579
OFFSET
0,2
COMMENTS
A recursive series with [a(n+1)/a(n)] converging to e.
a(15)/a(14) = 3318725/1220891 = 2.71828115... floor[log a(n)] = n. Example: log a(15) = log 3318725 = 15.01509...; floor(15.015...) = 15.
EXAMPLE
a(5) = 151 = floor[(e + 1/e)*a(4) - a(3)] = floor[(e + 1/e)(56) - 21].
MATHEMATICA
a[0] = 1; a[1] = 3; a[n_] := a[n] = Floor[(E + 1/E)*a[n - 1] - a[n - 2]]; Table[ a[n], {n, 0, 27}]
CROSSREFS
Cf. A085421.
Sequence in context: A278615 A090413 A128105 * A318900 A243633 A094374
KEYWORD
nonn
AUTHOR
Gary W. Adamson, Jul 05 2003
EXTENSIONS
More terms from Robert G. Wilson v, Jul 13 2003
STATUS
approved