OFFSET
0,2
COMMENTS
A recursive series with [a(n+1)/a(n)] converging to e.
a(15)/a(14) = 3318725/1220891 = 2.71828115... floor[log a(n)] = n. Example: log a(15) = log 3318725 = 15.01509...; floor(15.015...) = 15.
EXAMPLE
a(5) = 151 = floor[(e + 1/e)*a(4) - a(3)] = floor[(e + 1/e)(56) - 21].
MATHEMATICA
a[0] = 1; a[1] = 3; a[n_] := a[n] = Floor[(E + 1/E)*a[n - 1] - a[n - 2]]; Table[ a[n], {n, 0, 27}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Gary W. Adamson, Jul 05 2003
EXTENSIONS
More terms from Robert G. Wilson v, Jul 13 2003
STATUS
approved