OFFSET
0,3
COMMENTS
A parenthesization is fixed by the Catalan bijections A085169/A085170 if and only if no other elements than () and (()) occur at its top-level: (); ()(),(()); ()()(),()(()),(())(); ()()()(),()()(()),()(())(),(())()(),(())(()); ... There is a simple bijection between these and Zeckendorf-expansions, explaining why Fibonacci numbers gives the number of fixed points of this permutation.
In addition to "rising slope" and "descending slope" mappings from Dyck paths to noncrossing Murasaki-diagrams as illustrated in A085161 and A086431 there is also a mapping where we insert a vertical stick after every second parenthesis and connect those that are on the same level without any intermediate points below. This Catalan bijection converts between these two mappings. See the illustration at example lines.
LINKS
A. Karttunen, Gatomorphisms (With the complete Scheme source)
EXAMPLE
.........................
..._____....________.....
..|.....|..|.....|..|....
..|..|..|..|..|..|..|....
..|..|..|..|..|..|..|....
..|..|..|..|..|..|..|....
..|..|..|..|..|..|..|....
..1((2))3((4((5))6()7))..
...(())(((())()))........
...11001111001000=13256=A014486(368)
To obtain the same Murasaki diagram using the "rising slope mapping" illustrated in A085161, we should use the following Dyck path, encoded by 360th binary string in A014486/A063171:
....___.._____...........
...|...||...|.|..........
...||..|||..|.|..........
...||..|||..|.|..........
...||..||/\.|.|..........
...|/\.|/..\/\/\.........
.../..\/........\........
...11001110010100=13204=A014486(360)
PROG
(Scheme function implementing this automorphism on list-structures:)
(define (gma085169 s) (letrec ((evenlev (lambda (s) (cond ((not (pair? s)) s) (else (cons (oddlev (car s)) (evenlev (cdr s))))))) (oddlev (lambda (s) (cond ((not (pair? s)) s) (else (append (evenlev (car s)) (list (oddlev (cdr s))))))))) (evenlev s)))
CROSSREFS
Inverse: A085170. a(n) = A086433(A082853(n))+A082852(n). A074684 = A083925(A085169(A057548(n))). Cf. also A085159, A085160, A085175.
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jun 23 2003
STATUS
approved