login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A085169
Permutation of natural numbers induced by the Catalan bijection gma085169 acting on symbolless S-expressions encoded by A014486/A063171.
14
0, 1, 2, 3, 4, 5, 6, 8, 7, 9, 10, 11, 13, 12, 14, 15, 19, 22, 21, 16, 18, 17, 20, 23, 24, 25, 27, 26, 28, 29, 33, 36, 35, 30, 32, 31, 34, 37, 38, 39, 41, 40, 51, 52, 60, 64, 63, 56, 59, 58, 62, 42, 43, 47, 50, 49, 44, 46, 45, 48, 53, 55, 54, 61, 57, 65, 66, 67, 69, 68
OFFSET
0,3
COMMENTS
A parenthesization is fixed by the Catalan bijections A085169/A085170 if and only if no other elements than () and (()) occur at its top-level: (); ()(),(()); ()()(),()(()),(())(); ()()()(),()()(()),()(())(),(())()(),(())(()); ... There is a simple bijection between these and Zeckendorf-expansions, explaining why Fibonacci numbers gives the number of fixed points of this permutation.
In addition to "rising slope" and "descending slope" mappings from Dyck paths to noncrossing Murasaki-diagrams as illustrated in A085161 and A086431 there is also a mapping where we insert a vertical stick after every second parenthesis and connect those that are on the same level without any intermediate points below. This Catalan bijection converts between these two mappings. See the illustration at example lines.
EXAMPLE
.........................
..._____....________.....
..|.....|..|.....|..|....
..|..|..|..|..|..|..|....
..|..|..|..|..|..|..|....
..|..|..|..|..|..|..|....
..|..|..|..|..|..|..|....
..1((2))3((4((5))6()7))..
...(())(((())()))........
...11001111001000=13256=A014486(368)
To obtain the same Murasaki diagram using the "rising slope mapping" illustrated in A085161, we should use the following Dyck path, encoded by 360th binary string in A014486/A063171:
....___.._____...........
...|...||...|.|..........
...||..|||..|.|..........
...||..|||..|.|..........
...||..||/\.|.|..........
...|/\.|/..\/\/\.........
.../..\/........\........
...11001110010100=13204=A014486(360)
So we have A085169(368)=360 and A085170(360)=368.
PROG
(Scheme function implementing this automorphism on list-structures:)
(define (gma085169 s) (letrec ((evenlev (lambda (s) (cond ((not (pair? s)) s) (else (cons (oddlev (car s)) (evenlev (cdr s))))))) (oddlev (lambda (s) (cond ((not (pair? s)) s) (else (append (evenlev (car s)) (list (oddlev (cdr s))))))))) (evenlev s)))
CROSSREFS
Inverse: A085170. a(n) = A086433(A082853(n))+A082852(n). A074684 = A083925(A085169(A057548(n))). Cf. also A085159, A085160, A085175.
Number of cycles: A086585. Number of fixed points: A000045. Max. cycle size: A086586. LCM of cycle sizes: A086587. (In range [A014137(n-1)..A014138(n-1)] of this permutation).
Sequence in context: A127380 A122350 A127381 * A127379 A073289 A122349
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jun 23 2003
STATUS
approved