login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A085133
Numbers k such that k and its digit reversal are both 7-smooth (A002473).
2
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 18, 20, 21, 24, 27, 30, 36, 40, 42, 45, 48, 50, 54, 60, 63, 70, 72, 80, 81, 84, 90, 100, 120, 144, 180, 200, 210, 240, 252, 270, 288, 300, 343, 360, 400, 405, 420, 441, 450, 480, 500, 504, 525, 540, 576, 600, 630, 675, 686, 700, 720
OFFSET
1,2
COMMENTS
Though a large number of initial terms match, it is different from A005349.
From Robert Israel, Mar 18 2018: (Start)
If n is a term, then so are 10^k*n for all k.
Is a(147)=84672 the last term not divisible by 10? If so, then a(n+43)=10*a(n) for n >= 105. (End)
All terms a(147..10000) are divisible by 10; a(10000) has 235 decimal digits. - Michael S. Branicky, Sep 21 2024
LINKS
Michael S. Branicky, Table of n, a(n) for n = 1..10000 (terms 1..1225 from Robert Israel)
MAPLE
N:= 10^3: # to get all terms <= N (which should be a power of 10)
revdigs:= proc(n) local L;
L:= convert(n, base, 10);
add(10^(i-1)*L[-i], i=1..nops(L))
end proc:
S:= {seq(seq(seq(seq(2^a*3^b*5^c*7^d, d=0..floor(log[7](N/(2^a*3^b*5^c)))), c=0..floor(log[5](N/(2^a*3^b)))), b=0..floor(log[3](N/2^a))), a=0..floor(log[2](N)))}:
S:= S intersect map(revdigs, S):
S:= map(t -> seq(t*10^i, i=0..ilog10(N/t)), S):
sort(convert(S, list)); # Robert Israel, Mar 18 2018
PROG
(Python)
import heapq
from itertools import islice
from sympy import factorint
def is7smooth(n):
for p in [2, 3, 5, 7]:
while n%p == 0: n //= p
return n == 1
def agen(): # generator of terms
v, oldv, h = 1, 0, [1]
while True:
v = heapq.heappop(h)
if v != oldv:
if is7smooth(int(str(v)[::-1])):
yield v
oldv = v
for p in [2, 3, 5, 7]:
heapq.heappush(h, v*p)
print(list(islice(agen(), 65))) # Michael S. Branicky, Sep 20 2024
CROSSREFS
Sequence in context: A235507 A235697 A085135 * A308560 A285815 A337741
KEYWORD
base,nonn
AUTHOR
Amarnath Murthy, Jul 06 2003
EXTENSIONS
More terms from David Wasserman, Jan 28 2005
STATUS
approved