Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #27 Sep 22 2024 02:06:17
%S 1,2,3,4,5,6,7,8,9,10,12,18,20,21,24,27,30,36,40,42,45,48,50,54,60,63,
%T 70,72,80,81,84,90,100,120,144,180,200,210,240,252,270,288,300,343,
%U 360,400,405,420,441,450,480,500,504,525,540,576,600,630,675,686,700,720
%N Numbers k such that k and its digit reversal are both 7-smooth (A002473).
%C Though a large number of initial terms match, it is different from A005349.
%C From _Robert Israel_, Mar 18 2018: (Start)
%C If n is a term, then so are 10^k*n for all k.
%C Is a(147)=84672 the last term not divisible by 10? If so, then a(n+43)=10*a(n) for n >= 105. (End)
%C All terms a(147..10000) are divisible by 10; a(10000) has 235 decimal digits. - _Michael S. Branicky_, Sep 21 2024
%H Michael S. Branicky, <a href="/A085133/b085133.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..1225 from Robert Israel)
%p N:= 10^3: # to get all terms <= N (which should be a power of 10)
%p revdigs:= proc(n) local L;
%p L:= convert(n,base,10);
%p add(10^(i-1)*L[-i],i=1..nops(L))
%p end proc:
%p S:= {seq(seq(seq(seq(2^a*3^b*5^c*7^d, d=0..floor(log[7](N/(2^a*3^b*5^c)))),c=0..floor(log[5](N/(2^a*3^b)))), b=0..floor(log[3](N/2^a))), a=0..floor(log[2](N)))}:
%p S:= S intersect map(revdigs, S):
%p S:= map(t -> seq(t*10^i, i=0..ilog10(N/t)), S):
%p sort(convert(S,list)); # _Robert Israel_, Mar 18 2018
%o (Python)
%o import heapq
%o from itertools import islice
%o from sympy import factorint
%o def is7smooth(n):
%o for p in [2, 3, 5, 7]:
%o while n%p == 0: n //= p
%o return n == 1
%o def agen(): # generator of terms
%o v, oldv, h = 1, 0, [1]
%o while True:
%o v = heapq.heappop(h)
%o if v != oldv:
%o if is7smooth(int(str(v)[::-1])):
%o yield v
%o oldv = v
%o for p in [2, 3, 5, 7]:
%o heapq.heappush(h, v*p)
%o print(list(islice(agen(), 65))) # _Michael S. Branicky_, Sep 20 2024
%Y Cf. A005349, A002473.
%K base,nonn
%O 1,2
%A _Amarnath Murthy_, Jul 06 2003
%E More terms from _David Wasserman_, Jan 28 2005