|
|
A084973
|
|
The maximum departure from the x axis, rounded to the nearest integer, in each cycle of the zeta function for increasingly larger negative values.
|
|
0
|
|
|
0, 0, 0, 0, 0, 0, -1, 4, -34, 374, -4988, 78674, -1449689, 30854707, -751125115, 20736542367, -644361764772, 22387174696660, -864494448030320, 36906142650945649, -1733457688501062507, 89187472319797248472
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
-1,8
|
|
COMMENTS
|
"The zeta function is zero at every negative even number (the trivial zeros) and the successive peaks and troughs now ... get rapidly more and more dramatic as you head west (negative). The last trough I show, which occurs at s = -49.587622654 [6410765611566721701427687663932953145937293907205304283197148592994576700093701122213865946359936710563061421]..., has a depth of about 305,507,128,402,512,981,000,000 (305507128402512978943383.678283221037793184376280971034994413486029678612346873189963110344084662196600996131417814311). You see the difficulty of graphing the zeta function all in one piece." - Derbyshire
|
|
REFERENCES
|
John Derbyshire, Prime Obsession, Bernhard Riemann And The Greatest Unsolved Primblem In Mathematics, Joseph Henry Press, Washington, D.C., 2003, page 143.
|
|
LINKS
|
Table of n, a(n) for n=-1..20.
|
|
EXAMPLE
|
a(9) = 34 because between -19 and -21, (at -19.403133257176569932332310530627...), =~ -33.80830359565166465388882152774755514487136542215568...),
|
|
MATHEMATICA
|
Table[ Round[ 1/FindMinimum[ 1/Abs[ Zeta[s]], {s, -2t - 1 + {-0.9, +0.9}}, AccuracyGoal -> 50, WorkingPrecision -> 60] [[1]]], {t, 1, 30}]
|
|
CROSSREFS
|
Sequence in context: A199752 A264607 A307941 * A234313 A197921 A196692
Adjacent sequences: A084970 A084971 A084972 * A084974 A084975 A084976
|
|
KEYWORD
|
sign
|
|
AUTHOR
|
Robert G. Wilson v, May 23 2003
|
|
STATUS
|
approved
|
|
|
|