login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A084891
Multiples of 2, 3, 5, or 7, but not 7-smooth.
3
22, 26, 33, 34, 38, 39, 44, 46, 51, 52, 55, 57, 58, 62, 65, 66, 68, 69, 74, 76, 77, 78, 82, 85, 86, 87, 88, 91, 92, 93, 94, 95, 99, 102, 104, 106, 110, 111, 114, 115, 116, 117, 118, 119, 122, 123, 124, 129, 130, 132, 133, 134, 136, 138, 141, 142, 145, 146
OFFSET
1,1
COMMENTS
Intersection of A068191 with (A005843, A008585, A008587 and A008589); union of (A005843, A008585, A008587 and A008589) without A002473.
A020639(a(n)) <= 7, A006530(a(n)) > 7.
LINKS
Michael De Vlieger, Diagram showing numbers k in this sequence instead as k mod 210, in black, else white if k is coprime to 210, purple if k = 1, red if k | 210, and gold if rad(k) | 210, magnification 5X.
Eric Weisstein's World of Mathematics, Smooth Number.
MATHEMATICA
okQ[n_] := AnyTrue[{2, 3, 5, 7}, Divisible[n, #]&] && FactorInteger[n][[-1, 1]] > 7;
Select[Range[1000], okQ] (* Jean-François Alcover, Oct 15 2021 *)
PROG
(PARI) mult2357(m, n) = \\ mult 2, 3, 5, 7 not 7 smooth
{
local(x, a, j, f, ln);
for(x=m, n,
f=0;
if(gcd(x, 210)>1,
a = ifactor(x);
for(j=1, length(a),
if(a[j]>7, f=1; break);
);
if(f, print1(x", "));
);
);
}
ifactor(n) = \\ The vector of the prime factors of n with multiplicity.
{
local(f, j, k, flist);
flist=[];
f=Vec(factor(n));
for(j=1, length(f[1]),
for(k = 1, f[2][j], flist = concat(flist, f[1][j])
);
);
return(flist)
}
\\ Cino Hilliard, Jul 03 2009
(Python)
from sympy import primefactors
def ok(n):
pf = set(primefactors(n))
return pf & {2, 3, 5, 7} and pf - {2, 3, 5, 7}
print(list(filter(ok, range(147)))) # Michael S. Branicky, Oct 15 2021
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Jul 13 2003
STATUS
approved