OFFSET
1,1
COMMENTS
LINKS
Michael De Vlieger, Table of n, a(n) for n = 1..10000
Michael De Vlieger, Diagram showing numbers k in this sequence instead as k mod 210, in black, else white if k is coprime to 210, purple if k = 1, red if k | 210, and gold if rad(k) | 210, magnification 5X.
Eric Weisstein's World of Mathematics, Smooth Number.
MATHEMATICA
okQ[n_] := AnyTrue[{2, 3, 5, 7}, Divisible[n, #]&] && FactorInteger[n][[-1, 1]] > 7;
Select[Range[1000], okQ] (* Jean-François Alcover, Oct 15 2021 *)
PROG
(PARI) mult2357(m, n) = \\ mult 2, 3, 5, 7 not 7 smooth
{
local(x, a, j, f, ln);
for(x=m, n,
f=0;
if(gcd(x, 210)>1,
a = ifactor(x);
for(j=1, length(a),
if(a[j]>7, f=1; break);
);
if(f, print1(x", "));
);
);
}
ifactor(n) = \\ The vector of the prime factors of n with multiplicity.
{
local(f, j, k, flist);
flist=[];
f=Vec(factor(n));
for(j=1, length(f[1]),
for(k = 1, f[2][j], flist = concat(flist, f[1][j])
);
);
return(flist)
}
\\ Cino Hilliard, Jul 03 2009
(Python)
from sympy import primefactors
def ok(n):
pf = set(primefactors(n))
return pf & {2, 3, 5, 7} and pf - {2, 3, 5, 7}
print(list(filter(ok, range(147)))) # Michael S. Branicky, Oct 15 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Jul 13 2003
STATUS
approved