login
A084891
Multiples of 2, 3, 5, or 7, but not 7-smooth.
2
22, 26, 33, 34, 38, 39, 44, 46, 51, 52, 55, 57, 58, 62, 65, 66, 68, 69, 74, 76, 77, 78, 82, 85, 86, 87, 88, 91, 92, 93, 94, 95, 99, 102, 104, 106, 110, 111, 114, 115, 116, 117, 118, 119, 122, 123, 124, 129, 130, 132, 133, 134, 136, 138, 141, 142, 145, 146
OFFSET
1,1
COMMENTS
Intersection of A068191 with (A005843, A008585, A008587 and A008589); union of (A005843, A008585, A008587 and A008589) without A002473.
A020639(a(n)) <= 7, A006530(a(n)) > 7.
LINKS
Michael De Vlieger, Diagram showing numbers k in this sequence instead as k mod 210, in black, else white if k is coprime to 210, purple if k = 1, red if k | 210, and gold if rad(k) | 210, magnification 5X.
Eric Weisstein's World of Mathematics, Smooth Number.
MATHEMATICA
okQ[n_] := AnyTrue[{2, 3, 5, 7}, Divisible[n, #]&] && FactorInteger[n][[-1, 1]] > 7;
Select[Range[1000], okQ] (* Jean-François Alcover, Oct 15 2021 *)
PROG
(PARI) mult2357(m, n) = \\ mult 2, 3, 5, 7 not 7 smooth
{
local(x, a, j, f, ln);
for(x=m, n,
f=0;
if(gcd(x, 210)>1,
a = ifactor(x);
for(j=1, length(a),
if(a[j]>7, f=1; break);
);
if(f, print1(x", "));
);
);
}
ifactor(n) = \\ The vector of the prime factors of n with multiplicity.
{
local(f, j, k, flist);
flist=[];
f=Vec(factor(n));
for(j=1, length(f[1]),
for(k = 1, f[2][j], flist = concat(flist, f[1][j])
);
);
return(flist)
}
\\ Cino Hilliard, Jul 03 2009
(Python)
from sympy import primefactors
def ok(n):
pf = set(primefactors(n))
return pf & {2, 3, 5, 7} and pf - {2, 3, 5, 7}
print(list(filter(ok, range(147)))) # Michael S. Branicky, Oct 15 2021
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Jul 13 2003
STATUS
approved