login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A084890
Triangular array, read by rows: T(n,k) = arithmetic derivative of n*k, 1<=k<=n.
3
0, 1, 4, 1, 5, 6, 4, 12, 16, 32, 1, 7, 8, 24, 10, 5, 16, 21, 44, 31, 60, 1, 9, 10, 32, 12, 41, 14, 12, 32, 44, 80, 68, 112, 92, 192, 6, 21, 27, 60, 39, 81, 51, 156, 108, 7, 24, 31, 68, 45, 92, 59, 176, 123, 140, 1, 13, 14, 48, 16, 61, 18, 140, 75, 87, 22, 16, 44, 60, 112, 92, 156, 124, 272, 216, 244, 188, 384
OFFSET
1,3
LINKS
Eric Weisstein's World of Mathematics, Product Rule.
FORMULA
T(n,k) = A003415(n*k) = n*A003415(k)+k*A003415(n), 1<=k<=n.
T(n,1) = A003415(n); n>1.
T(n,2) = A068719(n).
T(n,n) = A068720(n).
EXAMPLE
................. 0
.............. 1 ... 4
........... 1 ... 5 ... 6
........ 4 .. 12 .. 16 .. 32
..... 1 ... 7 ... 8 .. 24 .. 10
.. 5 .. 16 .. 21 .. 44 .. 31 .. 60
1 ... 9 .. 10 .. 32 .. 12 .. 41 .. 14.
MATHEMATICA
ader[n_] := ader[n] =Switch[n, 0 | 1, 0, _, If[PrimeQ[n], 1, Sum[Module[{p, e}, {p, e} = pe; n e/p], {pe, FactorInteger[n]}]]];
T[n_, k_] := ader[n k];
Table[T[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, Sep 21 2021 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Reinhard Zumkeller, Jun 10 2003
STATUS
approved