The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A084727 Primes arising in A084726. 2
2, 3, 7, 281, 76561, 576577, 17873857, 643458817, 337767408001, 21617114112001, 39916801, 119715577952256001, 1980990543353657472001, 26582634158080001, 3577861898239093446857008573440001, 711975497511453268455460274177 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
Smallest prime of the form: 1 + product of n terms of an arithmetic progression with first term 1.
Conjecture: All terms exist.
If n! + 1 is prime (A002981) then a(n) = A088332(n). - Hugo Pfoertner, Nov 18 2004
LINKS
FORMULA
a(n) = 1 + Product_{i = 0..n-1} (1 + i*A084726(n)). - David Wasserman, Jan 03 2005
EXAMPLE
a(1) = 2 = 1 + 1;
a(4) = 281 = 1*4*7*10 + 1 (1*2*3*4 + 1 = 25 is composite);
a(5) = 76561 = 1*8*15*22*29 + 1.
MAPLE
A084727 := proc(n) local k, p: for k from 1 do p:=1+mul(1+j*k, j=0..n-1): if(isprime(p))then return p: fi: od: end: seq(A084727(n), n=1..16); # Nathaniel Johnston, Jun 26 2011
MATHEMATICA
np[n_]:=Module[{k=1}, While[!PrimeQ[Times@@NestList[k+#&, 1, n-1]+1], k++]; Times@@NestList[k+#&, 1, n-1]+1]; Array[np, 20] (* Harvey P. Dale, Aug 05 2021 *)
CROSSREFS
Sequence in context: A063869 A079637 A062662 * A100763 A132538 A334726
KEYWORD
nonn
AUTHOR
Amarnath Murthy and Meenakshi Srikanth (menakan_s(AT)yahoo.com), Jun 13 2003
EXTENSIONS
More terms from David Wasserman, Jan 03 2005
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 16 08:45 EDT 2024. Contains 373424 sequences. (Running on oeis4.)