OFFSET
1,7
COMMENTS
Order of set A = { (p,q): p+q = n, q>=p and q-p is a prime}.
a(1) = a(2) = 0; for even n >= 4, a(n) = 1; for odd n >= 3, a(n) = pi(n-1) - 1, where pi(n) = A000720(n) is the prime counting function. - Wesley Ivan Hurt, Feb 01 2013
LINKS
Antti Karttunen, Table of n, a(n) for n = 1..20000
FORMULA
a(n) = ( pi(n-1)-2 )*( n mod 2 ) + 1 + floor(1/n) - floor(n/2)*floor(2/n). - Wesley Ivan Hurt, Feb 01 2013
a(n) = Sum_{i=1..floor(n/2)} A010051(n-2i). - Wesley Ivan Hurt, Apr 10 2018
EXAMPLE
a(7) = 2 and the partitions are (1,6) and (2,5).
MATHEMATICA
a[1] = a[2] = 0; a[n_] := If[EvenQ[n], 1, PrimePi[n - 1] - 1]; Array[a, 90] (* Jean-François Alcover, Nov 24 2016, after Wesley Ivan Hurt *)
PROG
(PARI) A084360(n) = if(n<=2, 0, if(!(n%2), 1, primepi(n-1)-1)); \\ Antti Karttunen, Jan 22 2020
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Amarnath Murthy, May 27 2003
EXTENSIONS
More terms from Michel ten Voorde, Jun 20 2003
STATUS
approved