login
A084359
a(n) = number of partitions of n into pair of parts n=p+q, p>=q>=1, with p-q equal to a square >= 0.
2
0, 1, 1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 5, 6, 5
OFFSET
1,6
COMMENTS
Number of integers k, 1 <= k <= n/2 such that n - 2k is a square.
FORMULA
See Maple line.
EXAMPLE
a(11) = 2: the partitions are (1,10) and (5,6).
MAPLE
A084359 := n->if n mod 2 = 0 then floor(sqrt((n-2)/4))+1 else floor(sqrt((n-2)/4)-1/2)+1; fi; # applies for n >= 2
CROSSREFS
See A083023 for another version.
Sequence in context: A198333 A191591 A083023 * A143935 A008616 A331973
KEYWORD
nonn
AUTHOR
Amarnath Murthy, May 27 2003
STATUS
approved