login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A083658
a(n) = a(n-1) + a(n-2) + gcd(a(n-1), a(n-2)) for n > 1; a(0)=1, a(1)=1.
8
1, 1, 3, 5, 9, 15, 27, 45, 81, 135, 243, 405, 729, 1215, 2187, 3645, 6561, 10935, 19683, 32805, 59049, 98415, 177147, 295245, 531441, 885735, 1594323, 2657205, 4782969, 7971615, 14348907, 23914845, 43046721, 71744535, 129140163, 215233605, 387420489
OFFSET
0,3
COMMENTS
Record high values in A003961 (except for the duplicated 1). - Nicolas Bělohoubek, Jun 18 2022
Apart from a(0), this sequence is the answer to Question 21 in the 2022 Shanghai College Entrance Mathematics Examination: a(1) = 1, a(2*m) = 3^m for all m; for any n >= 2, there exists 1 <= i <= n-1 such that a(n+1) = 2*a(n)-a(i). Find a(n). - Yifan Xie, Jul 20 2022
a(n) n>1 are a subset of the record values formed by the odd composite numbers (A071904) divided by their largest prime factor. For example, A071904[2434] = 6561 with largest pf = 3. 6561/3 = 2187 and appears in A083658. - Bill McEachen, Jul 06 2024
FORMULA
a(2n) = 3^n, a(2n+1) = 5*3^(n-1) for n>0; a(0)=1, a(1)=1.
G.f.: (2*x^3+1+x)/(1-3*x^2). - R. J. Mathar, Feb 27 2010
a(n) = 3 * a(n-2), n>3, a(2)=3, a(3)=5. - Bill McEachen, Jul 06 2024
MATHEMATICA
CoefficientList[Series[(-2*x^3 - x - 1)/(3*x^2 - 1), {x, 0, 200}], x] (* Vladimir Joseph Stephan Orlovsky, Jun 10 2011 *)
CROSSREFS
Cf. A003961.
Sequence in context: A147087 A140190 A298352 * A018436 A018298 A017913
KEYWORD
nonn,easy
AUTHOR
Paul D. Hanna, Jun 13 2003
STATUS
approved