login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A083555
Quotient of LCM of prime(n+1)-1 and prime(n)-1 and GCD of the same two numbers.
9
2, 2, 6, 15, 30, 12, 72, 99, 154, 210, 30, 90, 420, 483, 598, 754, 870, 110, 1155, 1260, 156, 1599, 1804, 132, 600, 2550, 2703, 2862, 756, 72, 4095, 4420, 4692, 5106, 5550, 650, 702, 6723, 7138, 7654, 8010, 342, 9120, 2352, 9702, 1155, 1295, 12543, 12882
OFFSET
1,1
LINKS
FORMULA
a(n) = lcm(A006093(n+1), A006093(n))/gcd(A006093(n+1), A006093(n));
a(n) = A083554(n)/A058263(n).
a(n) = A051537(A006093(n+1), A006093(n)). - Robert Israel, Jun 11 2017
EXAMPLE
n=25: prime(25)=97, prime(26)=101; a(25) = lcm(96,100)/gcd(96,100) = 2400/4 = 600.
MAPLE
P:= seq(ithprime(i), i=1..100):
seq(ilcm(P[i+1]-1, P[i]-1)/igcd(P[i+1]-1, P[i]-1), i=1..99); # Robert Israel, Jun 11 2017
MATHEMATICA
f[x_] := Prime[x]-1 Table[LCM[f[w+1], f[w]]/GCD[f[w+1], f[w]], {w, 1, 128}]
(* Second program: *)
Table[Apply[LCM[#1, #2]/GCD[#1, #2] &, Prime[n + {1, 0}] - 1], {n, 49}] (* Michael De Vlieger, Jun 11 2017 *)
PROG
(PARI) first(n)=my(v=vector(n), p=2, k, g); forprime(q=3, , g=gcd(p-1, q-1); v[k++]=(p-1)*(q-1)/g^2; p=q; if(k==n, break)); v \\ Charles R Greathouse IV, Jun 11 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Labos Elemer, May 22 2003
STATUS
approved