login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A083437
Write decimal expansion of Pi in triangular form; sequence gives right edge.
4
3, 4, 9, 3, 9, 6, 3, 8, 9, 0, 0, 0, 5, 4, 4, 2, 8, 3, 8, 7, 3, 5, 2, 7, 1, 6, 6, 7, 3, 4, 1, 9, 7, 9, 4, 5, 2, 7, 5, 2, 3, 9, 1, 0, 8, 1, 3, 0, 0, 4, 6, 3, 2, 2, 1, 9, 6, 6, 5, 6, 2, 6, 6, 0, 9, 4, 6, 1, 6, 3, 4, 8, 4, 3, 1, 8, 6, 2, 2, 5, 7, 2, 5, 5, 9, 5, 9, 6, 5, 1, 6, 5, 5, 3, 1, 6, 8, 6, 3, 2, 2, 9, 7, 1, 6
OFFSET
1,1
COMMENTS
Select digits from decimal expansion of Pi corresponding to triangular number indices. [From Harvey P. Dale, Oct 15 2011]
LINKS
FORMULA
a(n)=A000796(2-n(n+1)/2). - M. F. Hasler, Oct 20 2011
EXAMPLE
Triangle is
3
14
159
2653
58979
323846
2643383
27950288
419716939
9375105820
MATHEMATICA
pi = RealDigits[Pi, 10, 5565][[1]]; Table[ pi[[n(n + 1)/2]], {n, 1, 105}]
With[{nn=110}, RealDigits[Pi, 10, (nn(nn+1))/2][[1]][[Accumulate[ Range[ nn]]]]] (* Harvey P. Dale, Oct 15 2011 *)
Module[{nn=110}, Last[#]&/@TakeList[RealDigits[Pi, 10, (nn(nn+1))/2][[1]], Range[ nn]]] (* Harvey P. Dale, Oct 02 2022 *)
CROSSREFS
Sequence in context: A122791 A011429 A225409 * A011292 A021745 A190285
KEYWORD
easy,nonn,base
AUTHOR
Cino Hilliard, Jul 24 2003
EXTENSIONS
Edited by Robert G. Wilson v, Jul 26 2003
STATUS
approved