Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 Oct 02 2022 16:22:37
%S 3,4,9,3,9,6,3,8,9,0,0,0,5,4,4,2,8,3,8,7,3,5,2,7,1,6,6,7,3,4,1,9,7,9,
%T 4,5,2,7,5,2,3,9,1,0,8,1,3,0,0,4,6,3,2,2,1,9,6,6,5,6,2,6,6,0,9,4,6,1,
%U 6,3,4,8,4,3,1,8,6,2,2,5,7,2,5,5,9,5,9,6,5,1,6,5,5,3,1,6,8,6,3,2,2,9,7,1,6
%N Write decimal expansion of Pi in triangular form; sequence gives right edge.
%C Select digits from decimal expansion of Pi corresponding to triangular number indices. [From Harvey P. Dale, Oct 15 2011]
%H Harvey P. Dale, <a href="/A083437/b083437.txt">Table of n, a(n) for n = 1..1000</a>
%F a(n)=A000796(2-n(n+1)/2). - M. F. Hasler, Oct 20 2011
%e Triangle is
%e 3
%e 14
%e 159
%e 2653
%e 58979
%e 323846
%e 2643383
%e 27950288
%e 419716939
%e 9375105820
%t pi = RealDigits[Pi, 10, 5565][[1]]; Table[ pi[[n(n + 1)/2]], {n, 1, 105}]
%t With[{nn=110},RealDigits[Pi,10,(nn(nn+1))/2][[1]][[Accumulate[ Range[ nn]]]]] (* _Harvey P. Dale_, Oct 15 2011 *)
%t Module[{nn=110},Last[#]&/@TakeList[RealDigits[Pi,10,(nn(nn+1))/2][[1]],Range[ nn]]] (* _Harvey P. Dale_, Oct 02 2022 *)
%Y Cf. A000796, A086639.
%K easy,nonn,base
%O 1,1
%A _Cino Hilliard_, Jul 24 2003
%E Edited by _Robert G. Wilson v_, Jul 26 2003