login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A082991
a(1) = 1 and for n > 1, a(n) = 2 * length of the cycle reached for the map x -> A062401(x), starting at n [where A062401(n) = phi(sigma(n))], or -1 if no finite cycle is ever reached.
1
1, 2, 2, 4, 2, 4, 4, 2, 2, 4, 4, 2, 4, 2, 2, 6, 4, 6, 2, 2, 6, 2, 2, 6, 6, 2, 6, 6, 2, 6, 6, 4, 6, 6, 6, 4, 6, 6, 6, 6, 2, 4, 2, 6, 6, 6, 6, 4, 4, 4, 6, 4, 6, 4, 6, 4, 4, 6, 6, 4, 6, 4, 4, 4, 6, 4, 4, 4, 4, 4, 6, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 6, 4, 4, 6, 4, 4, 6, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4
OFFSET
1,2
COMMENTS
From the original definition: Define a sequence u_n as follows: u_n(1) = n, thereafter u_n(2k) = sigma(u_n(2k-1)), u_n(2k+1) = phi(u_n(2k)); then a(n) is the length of the ultimate period of u_n(k) (which is conjectured to become ultimately periodic for any n>=1).
Conjecture: despite results for small terms, all even number are obtained as values. (For example, 12 occurs since a(12102) = 12).
From Antti Karttunen, Nov 07 2017: (Start)
Because for all n > 1, A000010(n) < n and A062401(n) > 1, such sequences u_n cannot end in odd cycle when n > 1. From this follows that for n > 1, a(n) = 2 * length of the cycle reached for the map x->A062401(x), starting at n, or -1 if no finite cycle is ever reached.
See entry A095955 for further notes about the occurrence of cycles.
(End)
REFERENCES
J. Berstel et al., Combinatorics on Words: Christoffel Words and Repetitions in Words, Amer. Math. Soc., 2008. See p. 83.
LINKS
FORMULA
a(1) = 1; for n > 1, a(n) = 2*A095955(n). [See comments.] - Antti Karttunen, Nov 07 2017
EXAMPLE
If n=6, u(1)=6, u(2)=sigma(6)=12, u(3)=phi(12)=4, u(4)=sigma(4)=7 u(5)=phi(7)=6, hence u(k) becomes periodic with period (6,12,4,7) of length 4 and a(6)=4.
CROSSREFS
KEYWORD
nonn
AUTHOR
Benoit Cloitre, May 29 2003
EXTENSIONS
Definition simplified by Antti Karttunen, Nov 07 2017
STATUS
approved