login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A082900
a(n) = A082894(n)-A000079(n), the difference of 2^n and the number closest to it and divisible by n.
7
0, 0, 1, 0, -2, 2, -2, 0, 1, -4, -2, -4, -2, -4, 7, 0, -2, 8, -2, 4, -8, -4, -2, 8, -7, -4, 1, 12, -2, -4, -2, 0, -8, -4, 17, 8, -2, -4, -8, -16, -2, 20, -2, -16, -17, -4, -2, -16, 19, -24, -8, -16, -2, 26, 12, 24, -8, -4, -2, -16, -2, -4, -8, 0, -32, 2, -2, -16, -8, 26, -2, 8, -2, -4, 7, -16, -18, 14, -2, -16, 1, -4, -2, 20, -32, -4, -8
OFFSET
1,5
COMMENTS
n=5:2^5=32 and number divisible by n=5 and closest to 32 is 30 = A082894(5), a(5)=30-32=-2 is the corresponding difference.
LINKS
FORMULA
a(n)=n*floor[(floor(n/2)+2^n)/n]-2^n
MATHEMATICA
Table[n*Floor[(Floor[n/2]+2^n)/n]-2^n, {n, 1, 100}]
PROG
(PARI)
A082894(n) = (n*(((n\2)+2^n)\n));
A082900(n) = (A082894(n)-(2^n)); \\ Antti Karttunen, Feb 18 2023
(PARI) A082900(n) = { my(x=2^n); for(k=0, oo, if(!((x-k)%n), return(-k), if(!((x+k)%n), return(k)))); }; \\ Antti Karttunen, Feb 18 2023
KEYWORD
sign,look
AUTHOR
Labos Elemer, Apr 22 2003
STATUS
approved