login
A082900
a(n) = A082894(n)-A000079(n), the difference of 2^n and the number closest to it and divisible by n.
7
0, 0, 1, 0, -2, 2, -2, 0, 1, -4, -2, -4, -2, -4, 7, 0, -2, 8, -2, 4, -8, -4, -2, 8, -7, -4, 1, 12, -2, -4, -2, 0, -8, -4, 17, 8, -2, -4, -8, -16, -2, 20, -2, -16, -17, -4, -2, -16, 19, -24, -8, -16, -2, 26, 12, 24, -8, -4, -2, -16, -2, -4, -8, 0, -32, 2, -2, -16, -8, 26, -2, 8, -2, -4, 7, -16, -18, 14, -2, -16, 1, -4, -2, 20, -32, -4, -8
OFFSET
1,5
COMMENTS
n=5:2^5=32 and number divisible by n=5 and closest to 32 is 30 = A082894(5), a(5)=30-32=-2 is the corresponding difference.
LINKS
FORMULA
a(n)=n*floor[(floor(n/2)+2^n)/n]-2^n
MATHEMATICA
Table[n*Floor[(Floor[n/2]+2^n)/n]-2^n, {n, 1, 100}]
PROG
(PARI)
A082894(n) = (n*(((n\2)+2^n)\n));
A082900(n) = (A082894(n)-(2^n)); \\ Antti Karttunen, Feb 18 2023
(PARI) A082900(n) = { my(x=2^n); for(k=0, oo, if(!((x-k)%n), return(-k), if(!((x+k)%n), return(k)))); }; \\ Antti Karttunen, Feb 18 2023
KEYWORD
sign,look
AUTHOR
Labos Elemer, Apr 22 2003
STATUS
approved