OFFSET
1,7
FORMULA
a(n) = Sum_{i=1..floor((n-1)/2)} mu(i)^2 * mu(n-i)^2 * mu(n-2*i)^2, where mu is the Möbius function (A008683).
a(n) = 0 for n in A111284. - Michel Marcus, Apr 17 2018
MATHEMATICA
Table[Sum[MoebiusMu[i]^2*MoebiusMu[n - i]^2*MoebiusMu[n - 2 i]^2, {i, Floor[(n - 1)/2]}], {n, 100}]
Table[Count[IntegerPartitions[n, {2}], _?(AllTrue[{#[[1]], #[[2]], #[[1]] - #[[2]]}, SquareFreeQ]&)], {n, 90}] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jan 21 2021 *)
PROG
(Magma) [0, 0] cat [&+[(MoebiusMu(k)^2*MoebiusMu(n-k)^2)*MoebiusMu(n-2*k)^2: k in [1..Floor((n-1)/2)]]: n in [3..100]]; // Vincenzo Librandi, Apr 17 2018
(PARI) a(n) = sum(i=1, (n-1)\2, moebius(i)^2*moebius(n-i)^2*moebius(n-2*i)^2); \\ Michel Marcus, Apr 17 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wesley Ivan Hurt, Apr 16 2018
STATUS
approved