login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A302986
Number of partitions of n into two distinct parts (p,q) such that p, q and |q-p| are all squarefree.
1
0, 0, 1, 1, 1, 0, 2, 2, 2, 0, 1, 2, 2, 0, 3, 3, 4, 0, 2, 3, 3, 0, 4, 4, 5, 0, 4, 3, 4, 0, 4, 5, 5, 0, 4, 7, 5, 0, 6, 6, 7, 0, 8, 7, 9, 0, 6, 7, 8, 0, 5, 7, 7, 0, 6, 6, 8, 0, 8, 7, 9, 0, 11, 7, 9, 0, 8, 10, 8, 0, 10, 13, 12, 0, 10, 11, 11, 0, 11, 11, 15, 0, 9
OFFSET
1,7
FORMULA
a(n) = Sum_{i=1..floor((n-1)/2)} mu(i)^2 * mu(n-i)^2 * mu(n-2*i)^2, where mu is the Möbius function (A008683).
a(n) = 0 for n in A111284. - Michel Marcus, Apr 17 2018
MATHEMATICA
Table[Sum[MoebiusMu[i]^2*MoebiusMu[n - i]^2*MoebiusMu[n - 2 i]^2, {i, Floor[(n - 1)/2]}], {n, 100}]
Table[Count[IntegerPartitions[n, {2}], _?(AllTrue[{#[[1]], #[[2]], #[[1]] - #[[2]]}, SquareFreeQ]&)], {n, 90}] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jan 21 2021 *)
PROG
(Magma) [0, 0] cat [&+[(MoebiusMu(k)^2*MoebiusMu(n-k)^2)*MoebiusMu(n-2*k)^2: k in [1..Floor((n-1)/2)]]: n in [3..100]]; // Vincenzo Librandi, Apr 17 2018
(PARI) a(n) = sum(i=1, (n-1)\2, moebius(i)^2*moebius(n-i)^2*moebius(n-2*i)^2); \\ Michel Marcus, Apr 17 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wesley Ivan Hurt, Apr 16 2018
STATUS
approved