login
A082881
Least value of A075860(j) when j runs through composite numbers between n-th and (n+1)-th primes. That is, the smallest fixed-point[=prime] reached by iteration of function A008472(=sum of prime factors) initiated with composite values between two consecutive primes.
1
0, 2, 5, 2, 5, 2, 5, 7, 2, 7, 2, 2, 5, 2, 2, 2, 7, 2, 2, 5, 2, 3, 2, 5, 3, 13, 2, 5, 3, 2, 2, 2, 3, 2, 7, 5, 3, 13, 2, 3, 7, 2, 5, 3, 2, 2, 2, 2, 5, 7, 2, 7, 2, 2, 2, 2, 7, 2, 3, 2, 2, 2, 2, 5, 2, 2, 5, 2, 19, 2, 2, 2, 5, 2, 2, 3, 2, 3, 2, 2, 17, 2, 5, 5, 2, 2, 2, 7, 23, 2, 2, 3, 3, 3, 5, 2, 2, 19, 2, 5, 2, 3, 2
OFFSET
1,2
FORMULA
a(n) = Min[A075860(x); x=1+p(n), ..., -1+p(n+1)].
EXAMPLE
Between p(23)=83 and p(24)=89, the relevant fixed points are
{5,13,2,2,13}, of which the smallest is 2=a(24).
MATHEMATICA
ffi[x_] := Flatten[FactorInteger[x]] lf[x_] := Length[FactorInteger[x]] ba[x_] := Table[Part[ffi[x], 2*w-1], {w, 1, lf[x]}] sopf[x_] := Apply[Plus, ba[x]] Table[Min[Table[FixedPoint[sopf, w], {w, 1+Prime[n], Prime[n+1]-1}]]
CROSSREFS
KEYWORD
nonn
AUTHOR
Labos Elemer, Apr 16 2003
STATUS
approved