login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A082755
Smaller of a pair of consecutive primes having only prime digits.
4
2, 3, 5, 223, 727, 3253, 3727, 5233, 5323, 7573, 7723, 7753, 22273, 23327, 25523, 27733, 32233, 32323, 32533, 35323, 35533, 37253, 37273, 52223, 52727, 53323, 53327, 53773, 55333, 72223, 72727, 75223, 75527, 75553, 222527, 222533, 222553, 223273, 223753, 225223
OFFSET
1,1
LINKS
Chai Wah Wu, Table of n, a(n) for n = 1..10000 (Terms for n = 1..1000 from Harvey P. Dale)
EXAMPLE
223 is a term as the next prime 227 also has only prime digits.
MATHEMATICA
NextPrim[n_] := Block[{k = n + 1}, While[ !PrimeQ[k], k++ ]; k]; p = 0; q = 1; pd = {1}; Do[p = q; pd = qd; q = NextPrim[p]; qd = Union[ Join[{2, 3, 5, 7}, IntegerDigits[q]]]; If[pd == qd == {2, 3, 5, 7}, Print[p]], {n, 1, 20000}]
Prime[#]&/@SequencePosition[Table[If[AllTrue[IntegerDigits[n], PrimeQ], 1, 0], {n, Prime[Range[20000]]}], {1, 1}][[All, 1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Aug 31 2017 *)
PROG
(Python)
from sympy import nextprime, isprime
from itertools import count, islice, product
def onlypd(n): return set(str(n)) <= set("2357")
def agen():
yield from [2, 3, 5]
for digits in count(2):
for p in product("2357", repeat=digits-1):
for end in "37":
t = int("".join(p) + end)
if isprime(t) and onlypd(nextprime(t)):
yield t
print(list(islice(agen(), 40))) # Michael S. Branicky, Mar 11 2022
CROSSREFS
Sequence in context: A082520 A062597 A038526 * A042067 A333803 A338262
KEYWORD
base,nonn
AUTHOR
Amarnath Murthy, Apr 18 2003
EXTENSIONS
Edited and extended by Robert G. Wilson v, Apr 22 2003
STATUS
approved