|
|
A082400
|
|
Numbers k such that 2^k + 3^(k-1) is prime.
|
|
1
|
|
|
1, 2, 3, 4, 5, 6, 7, 10, 12, 13, 16, 18, 23, 33, 34, 36, 37, 47, 48, 60, 64, 81, 102, 155, 160, 174, 222, 226, 237, 251, 282, 348, 790, 993, 1608, 1632, 1984, 2073, 3617, 3703, 5077, 5958, 6336, 8772
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
LINKS
|
Table of n, a(n) for n=1..44.
|
|
EXAMPLE
|
k=5 gives 32 + 81 = 113, a prime.
|
|
MATHEMATICA
|
Do[p = 2^n + 3^(n-1); If[PrimeQ[p], Print[n]], {n, 1, 10^4}] (* Ryan Propper, Jul 23 2005 *)
|
|
PROG
|
(PARI) is(n)=ispseudoprime(2^n+3^(n-1)) \\ Charles R Greathouse IV, Jun 12 2017
|
|
CROSSREFS
|
Sequence in context: A319975 A307625 A165722 * A072993 A018444 A032378
Adjacent sequences: A082397 A082398 A082399 * A082401 A082402 A082403
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Labos Elemer, Apr 14 2003
|
|
EXTENSIONS
|
8 more terms from Ryan Propper, Jul 23 2005
|
|
STATUS
|
approved
|
|
|
|