login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A082403
E.g.f.: 1-1/B(x) where B(x) is e.g.f. for A003024.
1
0, 1, 1, 13, 373, 24061, 3430021, 1085594413, 765444156373, 1199327541421981, 4150826776751106181, 31511604323119334675053, 521181162682913685911315413, 18663030289006900328937074926621
OFFSET
0,4
REFERENCES
R. W. Robinson, Counting labeled acyclic digraphs, p. 264 of F. Harary, editor, New Directions in the Theory of Graphs. Academic Press, NY, 1973
LINKS
MATHEMATICA
m = 20; b[0] = b[1] = 1;
b[n_] := b[n] = Sum[-(-1)^k Binomial[n, k] 2^(k (n-k)) b[n-k], {k, 1, n}];
B[x_] = Sum[b[n] x^n/n!, {n, 0, m}];
CoefficientList[1 - 1/B[x] + O[x]^(m+1), x] Range[0, m]! (* Jean-François Alcover, Jan 24 2020 *)
PROG
(PARI) \\ here G(n) gives A003024 as e.g.f.
G(n)={my(v=vector(n+1)); v[1]=1; for(n=1, n, v[n+1]=sum(k=1, n, -(-1)^k*2^(k*(n-k))*v[n-k+1]/k!))/n!; Ser(v)}
{ concat([0], Vec(serlaplace(1-1/G(15)))) } \\ Andrew Howroyd, Sep 10 2018
CROSSREFS
Cf. A003024.
Sequence in context: A009040 A009085 A012013 * A171656 A320458 A320635
KEYWORD
nonn
AUTHOR
Vladeta Jovovic, Apr 15 2003
STATUS
approved