login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A082055
Product of common prime-divisors (without multiplicity) of sigma(n) and phi(n).
4
1, 1, 2, 1, 2, 2, 2, 1, 1, 2, 2, 2, 2, 6, 2, 1, 2, 3, 2, 2, 2, 2, 2, 2, 1, 6, 2, 2, 2, 2, 2, 1, 2, 2, 6, 1, 2, 6, 2, 2, 2, 6, 2, 2, 6, 2, 2, 2, 3, 1, 2, 2, 2, 6, 2, 6, 2, 2, 2, 2, 2, 6, 2, 1, 6, 2, 2, 2, 2, 6, 2, 3, 2, 6, 2, 2, 6, 6, 2, 2, 1, 2, 2, 2, 2, 6, 2, 10, 2, 6, 2, 2, 2, 2, 6, 2, 2, 3, 6, 1, 2, 2, 2, 6, 6
OFFSET
1,3
COMMENTS
The squarefree kernel of the greatest common divisor of sigma(n) and phi(n). - Antti Karttunen, Jan 22 2020
LINKS
FORMULA
a(n) = A007947(A009223(n)). - Antti Karttunen, Jan 22 2020
MATHEMATICA
ffi[x_] := Flatten[FactorInteger[x]] lf[x_] := Length[FactorInteger[x]] ba[x_] := Table[Part[ffi[x], 2*w-1], {w, 1, lf[x]}] Table[Apply[Times, Intersection[ba[EulerPhi[w]], ba[DivisorSigma[1, w]]]], {w, 1, 256}]
PROG
(PARI) A082055(n) = factorback(factorint(gcd(sigma(n), eulerphi(n)))[, 1]); \\ Antti Karttunen, Jan 22 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
Labos Elemer, Apr 03 2003
STATUS
approved