login
This site is supported by donations to The OEIS Foundation.

 

Logo

Many excellent designs for a new banner were submitted. We will use the best of them in rotation.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A081759 Numbers n such that 5n+6 is prime. 10
1, 5, 7, 11, 13, 19, 25, 29, 35, 37, 41, 47, 49, 53, 55, 61, 65, 79, 83, 85, 91, 97, 103, 107, 113, 119, 125, 127, 131, 137, 139, 149, 151, 161, 163, 175, 181, 187, 193, 197, 203, 205, 209, 211, 217, 229, 233, 235, 239, 245, 257, 259, 263, 271, 275, 289 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Solutions of the equation (5*n+6)'=1, where n' is the arithmetic derivative of n. [Paolo P. Lava, Nov 15 2012]

REFERENCES

M. Cerasoli, F. Eugeni and M. Protasi, Elementi di Matematica Discreta, Bologna 1988

Emanuele Munarini and Norma Zagaglia Salvi, Matematica Discreta, UTET, CittaStudiEdizioni, Milano 1997

LINKS

Nathaniel Johnston, Table of n, a(n) for n = 1..10000

FORMULA

a(n) = 2*A024912(n+1)-1.

MAPLE

A081759 := proc(n) option remember: local k: if(n=1)then return 1: fi: for k from procname(n-1)+1 do if(isprime(5*k+6))then return k: fi: od: end: seq(A081759(n), n=1..100); # Nathaniel Johnston, May 28 2011

MATHEMATICA

Select[Range[300], PrimeQ[5# + 6] &] (*Chandler*)

PROG

(MAGMA) [n: n in [0..300]| IsPrime(5*n + 6)]; // Vincenzo Librandi, Oct 16 2012

CROSSREFS

Cf. A024912, A030430, A049511, A067076, A087505, A089192, A089253.

Sequence in context: A084441 A180950 A112397 * A155053 A152468 A088664

Adjacent sequences:  A081756 A081757 A081758 * A081760 A081761 A081762

KEYWORD

easy,nonn

AUTHOR

Giovanni Teofilatto, Nov 21 2003

EXTENSIONS

Corrected by Ray Chandler, Nov 22 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified April 24 13:28 EDT 2014. Contains 240983 sequences.