login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A081698
Expansion of (1 - sqrt( 1 - 4*x*sqrt( 1 + 4*x )) )/( 2*x ).
2
1, 3, 4, 21, 56, 282, 984, 4813, 19280, 93150, 403672, 1945954, 8845360, 42766292, 200419504, 974134461, 4659558048, 22785183670, 110564976792, 543935554390, 2667398588272, 13196971915628, 65238895435792, 324431740601618, 1614044041864800, 8063536826420460
OFFSET
0,2
LINKS
FORMULA
G.f.: (1-sqrt(1-4*x*sqrt(1+4*x)))/(2*x).
a(n) = sum(k=0..n, (binomial((k+1)/2,n-k)*binomial(2*k,k)*4^(n-k))/(k+1)). [Vladimir Kruchinin, Mar 13 2013]
D-finite with recurrence: n*(n+1)*a(n) +2*n*(5*n-7)*a(n-1) +4*(2*n^2-13*n+12)*a(n-2) -8*(2*n-3)*(14*n-37)*a(n-3) +16*(-64*n^2+392*n-573)*a(n-4) -96*(4*n-13)*(4*n-19)*a(n-5)=0. - R. J. Mathar, Jan 23 2020
MAPLE
a:= proc(n) option remember; `if`(n<4, [1, 3, 4, 21][n+1],
(2*n*(n+1)*(3-2*n) *a(n-1) +4*n*(2*n-1)*(2*n-3) *a(n-2)
+8*(2*n-3)*(8*n^2-16*n-15) *a(n-3)
+16*(4*n-15)*(4*n-9)*(n+1) *a(n-4)) /(n^2*(n+1)))
end:
seq(a(n), n=0..40); # Alois P. Heinz, Mar 13 2013
MATHEMATICA
a[n_] := Sum[Binomial[(k+1)/2, n-k]*Binomial[2*k, k]*4^(n-k)/(k+1), {k, 0, n}]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Apr 02 2015, after Vladimir Kruchinin *)
CoefficientList[Series[(1-Sqrt[1-4x Sqrt[1+4x]])/(2x), {x, 0, 30}], x] (* Harvey P. Dale, Oct 30 2017 *)
CROSSREFS
Cf. A081696.
Sequence in context: A034475 A156173 A094632 * A182096 A012123 A012255
KEYWORD
easy,nonn
AUTHOR
Emanuele Munarini, Apr 02 2003
STATUS
approved