login
A081701
a(n) = prime(n) * (prime(n) - 1)^(prime(n) - 1).
0
2, 12, 1280, 326592, 110000000000, 115909305827328, 313594649253062377472, 747581753430634213933056, 7852841179377049820122874642432, 961220170284347871014609119347573568569344
OFFSET
1,1
COMMENTS
The second, third and fourth terms a(n), n=2,3,4 are dimensions of certain Nichols algebras (quantum symmetric algebras) for which the generating space has dimension prime(n).
EXAMPLE
a(2) = 3 * 2^2 = 12 because prime(2) = 3.
MAPLE
for n from 1 to 10 do ithprime(n) * (ithprime(n)-1)^(ithprime(n)-1) od;
CROSSREFS
Cf. A000040.
Sequence in context: A138486 A022482 A372198 * A069714 A176391 A123743
KEYWORD
nonn
AUTHOR
Matias Grana [Mat'{i}as Gra~{n}a] (matiasg(AT)dm.uba.ar), Apr 02 2003
STATUS
approved